SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Yong) ;pers:(Zhang Yong 1982)"

Sökning: WFRF:(Zhang Yong) > Zhang Yong 1982

  • Resultat 1-10 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yang, Fei, et al. (författare)
  • High-Performance Electrothermal Film Based on Laser-Induced Graphene
  • 2022
  • Ingår i: Advanced Engineering Materials. - : Wiley. - 1527-2648 .- 1438-1656. ; 24:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, flexible and robust heaters are proposed based on laser-induced graphene (LIG) fabricated photothermally on polyimide (PI) substrates. The heaters are precisely defined by a computer numerical control (CNC) platform-driven laser diode with a one-step process. The electrothermal performance of the heaters can be adjusted by tuning the laser driving speed in a certain range under a given input power. The fabricated heater shows a high saturation temperature (270 °C), the fast response time (10 s), and satisfactory convective heat-transfer coefficient (42 W m−2°C−1). Simultaneously, the developed heaters demonstrate excellent flexibility, robust adhesion, and good long-time stability. The experimental results pave the way for high-performance, environmentally friendly, robust, and flexible heaters.
  •  
2.
  •  
3.
  • Huang, Shirong, et al. (författare)
  • Graphene Based Heat Spreader for High Power Chip Cooling Using Flip-chip Technology
  • 2013
  • Ingår i: 2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013). - 9781479928330 ; , s. 347-352
  • Konferensbidrag (refereegranskat)abstract
    • Monolayer graphene was synthesized through thermal chemical vapor deposition (TCVD) as heat spreader for chip cooling. Platinum (Pt) serpentine functioned as hot spot on the thermal testing chip. The thermal testing chip with monolayer graphene film attached was bonded using flip-chip technology. The temperature at the hot spot with a monolayer graphene film as heat spreader was decreased by about 12°C and had a more uniform temperature compared to those without graphene heat spreader when driven by a heat flux of about 640W/cm 2 . Further improvements to the cooling performance of graphene heat spreader could be made by optimizing the synthesis parameters and transfer process of graphene films. © 2013 IEEE.
  •  
4.
  • Lu, Pei, et al. (författare)
  • Thermal Conduction of Fiber-Reinforced Polymer under Loading
  • 2021
  • Ingår i: 2021 23rd European Microelectronics and Packaging Conference and Exhibition, EMPC 2021.
  • Konferensbidrag (refereegranskat)abstract
    • Thermal performance of an epoxy resin reinforced by carbon fibers is studied by numerical simulation method. Various carbon fiber structures are taken into consideration and the effective thermal conductivity of the composite carbon fiber waved structure is obtained. The influences of the number, size, shape, spacing and arrangement of the carbon fibers on the thermal conduction of the composites are analyzed. The deformation of the composite under mechanical loading and the corresponding the thermal conductivity of the carbon fiber-reinforced epoxy resin are also investigated.
  •  
5.
  • Zhang, Yong, 1982, et al. (författare)
  • 2D HEAT DISSIPATION MATERIALS FOR MICROELECTRONICS COOLING APPLICATIONS
  • 2016
  • Ingår i: China Semiconductor Technology International Conference 2016, CSTIC 2016. - 9781467388047
  • Konferensbidrag (refereegranskat)abstract
    • The need for faster and smaller, as well as more reliable and efficient consumer electronic products has resulted in microelectronic components that produce progressively more heat. The resultant reliability issues from the increased heat flux are serious and hinder technological development. One solution for microelectronics cooling applications is 2D materials applied as heat spreaders and these include monolayer graphene, graphene based films, and monolayer hexagonal boron nitride and BN based films. In addition, thermal performances of the graphene heat spreader were also studied under different packaging structures, including wire bonding, cooling fins and flip chips. Finally, 2D hexagonal Boron nitride (h-BN) heat spreaders, fabricated by different methods, had their heat dissipation performances characterized by different thermal characterization methods, such as resistance temperature detector (RTD) and Infrared (IR) methods. In conclusion, these new novel 2D materials developed show great potential for microelectronics cooling applications.
  •  
6.
  • Zhang, Yong, 1982, et al. (författare)
  • Improved Heat Spreading Performance of Functionalized Graphene in Microelectronic Device Application
  • 2015
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-3028 .- 1616-301X. ; 25:28, s. 4430-4435
  • Tidskriftsartikel (refereegranskat)abstract
    • It is demonstrated that a graphene-based film (GBF) functionalized with silane molecules strongly enhances thermal performance. The resistance temperature detector results show that the inclusion of silane molecules doubles the heat spreading ability. Furthermore, molecular dynamics simulations show that the thermal conductivity () of the GBF increased by 15%-56% with respect to the number density of molecules compared to that with the nonfunctionalized graphene substrate. This increase in is attributed to the enhanced in-plane heat conduction of the GBF, resulting from the simultaneous increase of the thermal resistance between the GBF and the functionalized substrate limiting cross-plane phonon scattering. Enhancement of the thermal performance by inserting silane-functionalized molecules is important for the development of next-generation electronic devices and proposed application of GBFs for thermal management.
  •  
7.
  • Zhang, Yong, 1982, et al. (författare)
  • Improved Thermal Properties of Three-Dimensional Graphene Network Filled Polymer Composites
  • 2022
  • Ingår i: Journal of Electronic Materials. - : Springer Science and Business Media LLC. - 1543-186X .- 0361-5235. ; 51:1, s. 420-425
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the improved thermal property of three-dimensional (3D) graphene network modified polydimethylsiloxane (PDMS) composites. It shows that with a 2 wt.% loading of graphene foams (GF), the thermal conductivity of GF/PDMS composite was successfully increased from 0.19 W/mK to 0.42 W/mK, which is 2.2 times higher than that of neat PDMS. However, if GF was transformed into graphene sheets (GS) by sonication, the thermal conductivity of GS/PDMS was decreased to 0.28 W/mK. The remarkable improvement of the thermal properties is attributed to the 3D interconnected graphene network in GF, which form continuous heat transfer networks. Furthermore, the finite element analysis was conducted to evaluate the effect of GFs in composites, where some parameters such as thickness and thermal conductivity were analyzed and discussed. Our results indicate that the continuous 3D GFs holds great potential as fillers to improve the thermal property of polymer materials.
  •  
8.
  • Zhang, Yong, 1982, et al. (författare)
  • Properties of Undoped Few-Layer Graphene-Based Transparent Heaters
  • 2020
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In many applications like sensors, displays, and defoggers, there is a need for transparent and efficient heater elements produced at low cost. For this reason, we evaluated the performance of graphene-based heaters with from one to five layers of graphene on flexible and transparent polyethylene terephthalate (PET) substrates in terms of their electrothermal properties like heating/cooling rates and steady-state temperatures as a function of the input power density. We found that the heating/cooling rates followed an exponential time dependence with a time constant of just below 6 s for monolayer heaters. From the relationship between the steady-state temperatures and the input power density, a convective heat-transfer coefficient of 60 W·m−2·°C−1 was found, indicating a performance much better than that of many other types of heaters like metal thin-film-based heaters and carbon nanotube-based heaters.
  •  
9.
  • Zhang, Yan, et al. (författare)
  • Study on the verification of IR and RTD methods applied in the thermal measurement of high power chips
  • 2014
  • Ingår i: 15th International Conference on Electronic Packaging Technology, ICEPT 2014; Wangjiang HotelChengdu; China; 12 August 2014 through 15 August 2014. - 9781479947072 ; , s. 1507-1511
  • Konferensbidrag (refereegranskat)abstract
    • In the present paper, a chip with a Pt-based RTD that functions as a heater and sensor is tested under serial power loads, and infrared (IR) thermal imaging system is adopted to obtain the thermal measurement. Comparisons of the hotspot temperatures of the chip obtained by RTD and IR methods have been made, where different surfaces of the chip were observed by the IR camera. Combing with the heat conduction law, the IR results of the test chip with surface preparation showed quite a good agreement with the RTD data, verifying the validation of the IR analysis method.
  •  
10.
  • Zhang, Yong, 1982, et al. (författare)
  • Transparent heaters based on CVD grown few-layer graphene
  • 2022
  • Ingår i: Journal of Materials Science: Materials in Electronics. - : Springer Science and Business Media LLC. - 1573-482X .- 0957-4522. ; 33:7, s. 3586-3594
  • Tidskriftsartikel (refereegranskat)abstract
    • The outstanding thermal and optical properties of graphene make it tremendously interesting as heating elements. In this work, we demonstrate few-layer graphene as heating elements on glass substrate by chemical vapor deposition (CVD) method combined with a layer-by-layer transfer process. The electrothermal performance was studied in terms of applied voltage, heating/cooling rate and input power density. The results show that a three-layer graphene film heater can reach an equilibrium temperature up to 102 °C and a maximum heating rate of 1.8 °C/s when 60 V voltage was applied. Simulations were further performed to rationalize the experimental results, in which the effect of heat transfer coefficient, electric conductivity, and the effective stress distribution was discussed. It was found that the adhesion between graphene and substrate is very important for the heat performance, especially at high temperatures. Our results indicate that graphene-based films are promising candidate materials for the next generation of transparent heating elements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy