SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Zheng) ;pers:(Lopez Cabezas Ana)"

Sökning: WFRF:(Zhang Zheng) > Lopez Cabezas Ana

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Jiantong, et al. (författare)
  • Ink-jet printed thin-film transistors with carbon nanotube channels shaped in long strips
  • 2011
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 109:8, s. 084915-
  • Tidskriftsartikel (refereegranskat)abstract
    • The present work reports on the development of a class of sophisticated thin-film transistors (TFTs) based on ink-jet printing of pristine single-walled carbon nanotubes (SWCNTs) for the channel formation. The transistors are manufactured on oxidized silicon wafers and flexible plastic substrates at ambient conditions. For this purpose, ink-jet printing techniques are developed with the aim of high-throughput production of SWCNT thin-film channels shaped in long strips. Stable SWCNT inks with proper fluidic characteristics are formulated by polymer addition. The present work unveils, through Monte Carlo simulations and in light of heterogeneous percolation, the underlying physics of the superiority of long-strip channels for SWCNT TFTs. It further predicts the compatibility of such a channel structure with ink-jet printing, taking into account the minimum dimensions achievable by commercially available printers. The printed devices exhibit improved electrical performance and scalability as compared to previously reported ink-jet printed SWCNT TFTs. The present work demonstrates that ink-jet printed SWCNT TFTs of long-strip channels are promising building blocks for flexible electronics.
  •  
2.
  •  
3.
  • Lopez Cabezas, Ana, 1980-, et al. (författare)
  • Influence of Carbon Nanotubes on Thermal Stability of Water-Dispersible Nanofibrillar Polyaniline/Nanotube Composite
  • 2012
  • Ingår i: Materials. - Basel, Switzerland : MDPI AG. - 1996-1944 .- 1996-1944. ; 5:2, s. 327-335
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant influence on the thermal stability of polyaniline (PANI) in the presence of multi-walled carbon nanotubes (MWCNTs) is reported. By means of in-situ rapid mixing approach, water-dispersible nanofibrillar PANI and composites, consisting of MWCNTs uniformly coated with PANI in the state of emeraldine salt, with a well-defined core-shell heterogeneous structure, were prepared. The de-protonation process in PANI occurs at a lower temperature under the presence of MWCNTs on the polyaniline composite upon thermal treatment. However, it is found that the presence of MWCNTs significantly enhances the thermal stability of PANI's backbone upon exposure to laser irradiation, which can be ascribed to the core-shell heterogeneous structure of the composite of MWCNTs and PANI, and the high thermal conductivity of MWCNTs.
  •  
4.
  • Lopez Cabezas, Ana, et al. (författare)
  • Morphological development of nanofibrillar composites of polyaniline and carbon nanotubes
  • 2010
  • Ingår i: Synthetic metals. - : Elsevier BV. - 0379-6779 .- 1879-3290. ; 160:7-8, s. 664-668
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanofibrillar composite of polyaniline (PANI)/multi-walled carbon nanotubes (MWNTs) is readily synthesized by means of conventional in situ polymerization process. It is found that the MWNT loading during polymerization has a significant influence on both the micro- and macro-scale morphological properties of the composites. At low MWNT loadings, PANI/MWNTs are formed as individual nanofibers, similar to that of the neat PANI in the absence of MWNTs. With the increase in MWNT loading, the composite exhibits granular form and becomes a continuous porous matrix at higher MWNT loadings. A possible mechanism is proposed to account for the structural variation of the composites caused by MWNTs at the different loadings.
  •  
5.
  • Lopez Cabezas, Ana, 1980- (författare)
  • Nanofibrillar Materials for Organic and Printable Electronics
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In recent years, organic electronics have attracted great attention due to their multiple advantages such as light weight, flexibility, large area fabrication and cost-effective production processes. The recent progress in fabricating organic electronic devices has been achieved with the development of new materials which provide competing functionalities to the electronics devices.  However, as it happens with all type of technologies, organic electronics is not free from challenges. In the latest OE-A Roadmap for organic and printed electronics (2011), the “red brick walls” were identified, and the following three main challenges were pointed out as the potential roadblocks from the material point of view: electrical performance, solution processability (especially formulations in non-toxic solvents) and environmental stability. Currently there is a significant increasing interest in optimizing or developing novel materials to meet those requirements. This thesis presents processing development and study of nanofibrillar materials and deals with the optimization for its applicability for organic electronics. The overall work presented in the thesis is based on three nanofibrillar materials: Polyaniline (PANI), carbon nanotubes (CNTs) and the CNT/PANI composite. First, the solution processability of carbon nanotubes and polyaniline is studied respectively, and through covalent and non-covalent methods, stable aqueous dispersions of these materials are successfully achieved. Second, a composite consisting of multi-walled carbon nanotubes (MWCNTs) and PANI with a core-shell structure is developed and characterized. The investigation of the effects of the loading and type of nanotubes incorporated in the composite material, led to understanding on the fundamental theory underlying the composite morphology. Based on those findings and by carefully optimizing the synthesis procedure, water dispersible MWCNT/PANI nanofibrillar composite is successfully synthesized becoming compatible with solution processable techniques, such as spray coating and potentially with printing technology. With the incorporation of carbon nanotubes, the nanofibrillar composite reaches conductivities 20 times higher than that of the pure polymer. Moreover, the presence of the nanotubes in the composite material decelerates up to 60 times the thermal ageing of its conductivity, making the polymer more robust and suitable for possible manufacturing processes. Furthermore, the composite material still retains the advantageous properties of PANI: electrochromism, tunable conductivities, and sensing capabilities. Third, the stable dispersions of PANI, CNTs and MWCNT/PANI composite were effectively deposited by spray coating technique on several low-cost substrates (PET, PEN, polyimide and papers), and homogeneous, flexible, large-area films were fabricated. Additionally, by spraying the materials on pre-fabricated inkjet printed electrodes, a pH sensor based on the MWCNT/PANI composite and a humidity sensor based on functionalized MWCNTs capable of working at GHz range were demonstrated, which shows that the nanofibrillar materials studied in this thesis work are promising sensor materials for wireless application at ultra-high frequency (UHF) band. Finally, the humidity sensor was integrated into a sensor-box demonstrating a hybrid interconnection platform where printed electronics can be seamlessly integrated with silicon-based electronics. The integration closes the gap between the two technologies, anticipating the adaption of organic electronic technologies.
  •  
6.
  • Feng, Yi, et al. (författare)
  • Flexible UHF resistive humidity sensors based on carbon nanotubes
  • 2012
  • Ingår i: IEEE Sensors Journal. - 1530-437X .- 1558-1748. ; 12:9, s. 2844-2850
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the investigation of the resistive humidity-sensing properties of multi-walled carbon nanotubes (MWCNTs). MWCNTs functionalized by acid treatment (f-MWCNTs) exhibit rather high sensitivity in resistance toward humidity, owing to the presence of carboxylic groups on the nanotube surface. By integrating the f-MWCNTs resistor into a wireless sensor platform, flexible humidity sensors for ultra-high frequency applications are investigated. The operating frequency range of the sensor is dramatically increased from 600 MHz to 2 GHz by adjusting the resistor-electrodes' configuration. This enhancement is predominately attributed to the variation in parasitic capacitance between the resistor-electrodes.
  •  
7.
  • Lopez Cabezas, Ana, 1980-, et al. (författare)
  • Thermal ageing of electrical conductivity in carbon nanotube/polyaniline composite films
  • 2013
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223 .- 1873-3891. ; 59, s. 270-277
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of carbon nanotubes on the thermal ageing effect of the electrical conductivity of composite thin films is presented. The composite thin films comprise carbon nanotube/polyaniline nanofibers. When subject to thermal treatment, the presence of nanotubes retards the loss of dopants from the polyaniline and enhances the thermal stability in electrical conductivity of the composite thin films. Specifically, an increase in temperature for the conductivity degradation and a significant reduction in the rate of the conductivity degradation of the composite thin films are observed. Upon prolonged heating, the composite thin films exhibit relative large conductivity at high nanotube content, while the polyaniline thin films become insulating.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy