SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zheng Jie) ;srt2:(2020);hsvcat:1"

Sökning: WFRF:(Zheng Jie) > (2020) > Naturvetenskap

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Yang, et al. (författare)
  • Defect State Assisted Z-scheme Charge Recombination in Bi2O2CO3/Graphene Quantum Dot Composites for Photocatalytic Oxidation of NO
  • 2020
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 3:1, s. 772-781
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we explored the photoinduced charge carriers dynamics rationalizing the photocatalytic oxidation of NO over N-doped Bi2O2CO3/graphene quantum dots composites(N-BOC/GQDs) via time-resolved photoluminescence (TRPL). Under visible light illumination, only GQDs can be photoexcited and inject electrons to N-BOC within 0.5 ns. Under UV light irradiation, the interfacial Z-scheme heterojunction recombination between the electrons in N-BOC and holes in GQDs dominate the depopulation of excited states within 0.36 ns. Such efficient Z-scheme recombination regardless of the large energy difference (1.66 eV) is mediated by the interfacial oxygen vacany defect states characterized by both density functional theory calculations (DFT) and electron paramagnetic resonance (EPR) measurement. This finding provide a novel strategic view to improve the photocatalytic performance of the nanocomposite by interfacial engineering
  •  
2.
  • Chen, Lu, et al. (författare)
  • Sulfur and potassium co-doped graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution
  • 2020
  • Ingår i: Applied Catalysis B. - : Elsevier BV. - 0926-3373 .- 1873-3883. ; 273
  • Tidskriftsartikel (refereegranskat)abstract
    • Modifying the structure of a photocatalyst to tailor its electronic and physicochemical properties is an effective approach for efficient photocatalysis. Herein, we demonstrate that co-doping non-metal (S) and metal (K) atoms into graphitic carbon nitride (g-C3N4) provides excellent visible-light photocatalytic hydrogen production activity of 8.78 mmol g−1 h−1, which is 98 times higher than that of pristine g-C3N4 (0.09 mmol g−1 h−1). The apparent quantum efficiency of the S+K-co-doped g-C3N4 reaches 70 % at 420 nm. This outstanding photocatalytic performance attributed to an increased specific surface area from 6.78 to 74.23 cm3 g−1, which reduced the recombination of photogenerated charge carriers and enhanced conductivity. Various characterizations are undertaken to elucidate the S+K-co-doped g-C3N4 photocatalytic mechanism. Our work not only demonstrates a facile, eco-friendly and scalable strategy for the synthesis of S+K-co-doped g-C3N4 photocatalysts, but also opens a new avenue for the design of co-doped photocatalysts.
  •  
3.
  • Guo, Ruiqi, et al. (författare)
  • Exploiting Flexible Memristors Based on Solution-Processed Colloidal CuInSe2 Nanocrystals
  • 2020
  • Ingår i: Advanced Electronic Materials. - : Wiley. - 2199-160X. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Compared to analogous bulk materials, colloidal nanocrystals have presented a powerful platform for building up electronic devices on the nano/micrometer scale and flexible portable electronic apparatus with the benefits of solution-based processing approach at room temperature. Herein, memristors based on CuInSe2 (CISe) colloidal nanocrystals prepared using a solution-based process at room temperature are constructed. The memristors exhibit obvious bipolar resistive switching performance with a high–low resistance ratio larger than 5.7 and a steady retention time over 104 s. This is attributed to the copper ion redox reaction and the migration of these ions under an applied electric field. When the SET voltage is reached, the ions are separated from one of the electrodes, and the memristor changes from a low-resistance state (LRS) to a high-resistance state (HRS). Conversely, when the voltage reaches the RESET voltage, the memristor switches from a HRS to a LRS. In addition, the flexible memristor can be fabricated by spincoating nanocrystal solution onto polyethylene terephthalate (PET) at room temperature, showing excellent reproducibility of the performance including 100 times of continuous operation, 104 s of reproducible reading, 600 times of antifatigue testing, and thermal stability up to 95 °C. The flexible devices demonstrate promising applications for portable electronic devices.
  •  
4.
  • Liang, Mingli, et al. (författare)
  • Electronic Structure and Trap States of Two-Dimensional Ruddlesden–Popper Perovskites with the Relaxed Goldschmidt Tolerance Factor
  • 2020
  • Ingår i: ACS Applied Electronic Materials. - : American Chemical Society (ACS). - 2637-6113. ; 2:5, s. 1402-1412
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional Ruddlesden–Popper perovskites (2D RPPs) have been considered as promising building blocks for optoelectronic applications owing to optical properties comparable to the ones of 3D perovskites, together with superior stability. In addition, the more flexible structure adopted by such perovskites leads to a relaxation of the Goldschmidt tolerance factor (τ) requirement. Herein, we compare the crystalline and electronic structures, as well as the photophysics of two 2D perovskite single crystals (n-BA)2(MA)2Pb3I10 (BMAPI) and (n-BA)2(EA)2Pb3I10 (BEAPI) (n-BA = n-butylamine) containing small A-cations (MA, methylammonium) and large A-cations (EA, ethylammonium), respectively. The latter presents a relaxed τ (τEA > 1) compared with the requirement of a stable phase in 3D perovskites (τ < 1). Such relaxed τ is beneficial from the structural flexibility of the long organic cation bilayer and the pronounced lattice distortions in the 2D perovskite structures. We further elucidate how the greater lattice distortions concurrently modulate the electronic structure as well as trap densities in these 2D RPPs. The electronic band gap (Eg) of BEAPI (2.08 ± 0.03 eV) is ∼0.17 eV larger than the one of BMAPI (1.91 ± 0.03 eV). This is mainly because of a shift in the valence band maximum associated with the expansion of the Pb–I bond length in BEAPI. In addition, the overall trap state densities for BMAPI and BEAPI are calculated to be ∼2.18 × 1016 and ∼3.76 × 1016 cm–3, respectively, as extracted from the time-resolved photoluminescence studies. The larger trap density in BEAPI can be attributed to the stronger interfacial lattice distortion that sets in when large EA cations are contained into the inorganic crystal lattice.
  •  
5.
  • Meng, Jie, et al. (författare)
  • Modulating Charge-Carrier Dynamics in Mn-Doped All-Inorganic Halide Perovskite Quantum Dots through the Doping-Induced Deep Trap States
  • 2020
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 11:9, s. 3705-3711
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition-metal ion doping has been demonstrated to be effective for tuning the photoluminescence properties of perovskite quantum dots (QDs). However, it would inevitably introduce defects in the lattice. As the Mn concentration increases, the Mn dopant photoluminescence quantum yield (PLQY) first increases and then decreases. Herein the influence of the dopant and the defect states on the photophysics in Mn-doped CsPbCl3 QDs was studied by time-resolved spectroscopies, whereas the energy levels of the possible defect states were analyzed by density functional theory calculations. We reveal the formation of deep interstitials defects (Cli) by Mn2+ doping. The depopulation of initial QD exciton states is a competition between exciton-dopant energy transfer and defect trapping on an early time scale (<100 ps), which determines the final PLQY of the QDs. The present work establishes a robust material optimization guideline for all of the emerging applications where a high PLQY is essential.
  •  
6.
  • Naumova, Maria A., et al. (författare)
  • Exploring the light-induced dynamics in solvated metallogrid complexes with femtosecond pulses across the electromagnetic spectrum
  • 2020
  • Ingår i: The Journal of chemical physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 152:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligonuclear complexes of d4-d7 transition metal ion centers that undergo spin-switching have long been developed for their practical role in molecular electronics. Recently, they also have appeared as promising photochemical reactants demonstrating improved stability. However, the lack of knowledge about their photophysical properties in the solution phase compared to mononuclear complexes is currently hampering their inclusion into advanced light-driven reactions. In the present study, the ultrafast photoinduced dynamics in a solvated [2 × 2] iron(II) metallogrid complex are characterized by combining measurements with transient optical-infrared absorption and x-ray emission spectroscopy on the femtosecond time scale. The analysis is supported by density functional theory calculations. The photocycle can be described in terms of intra-site transitions, where the FeII centers in the low-spin state are independently photoexcited. The Franck-Condon state decays via the formation of a vibrationally hot high-spin (HS) state that displays coherent behavior within a few picoseconds and thermalizes within tens of picoseconds to yield a metastable HS state living for several hundreds of nanoseconds. Systematic comparison with the closely related mononuclear complex [Fe(terpy)2]2+ reveals that nuclearity has a profound impact on the photoinduced dynamics. More generally, this work provides guidelines for expanding the integration of oligonuclear complexes into new photoconversion schemes that may be triggered by ultrafast spin-switching.
  •  
7.
  • Naumova, Maria A., et al. (författare)
  • Revealing Hot and Long-Lived Metastable Spin States in the Photoinduced Switching of Solvated Metallogrid Complexes with Femtosecond Optical and X-ray Spectroscopies
  • 2020
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 11:6, s. 2133-2141
  • Tidskriftsartikel (refereegranskat)abstract
    • An atomistic understanding of the photoinduced spin-state switching (PSS) within polynuclear systems of d4-d7 transition metal ion complexes is required for their rational integration into light-driven reactions of chemical and biological interest. However, in contrast to mononuclear systems, the multidimensional dynamics of the PSS in solvated molecular arrays have not yet been elucidated due to the expected complications associated with the connectivity between the metal centers and the strong interactions with the surroundings. In this work, the PSS in a solvated triiron(II) metallogrid complex is characterized using transient optical absorption and X-ray emission spectroscopies on the femtosecond time scale. The complementary measurements reveal the photoinduced creation of energy-rich (hot) and long-lived quintet states, whose dynamics differ critically from their mononuclear congeners. This finding opens major prospects for developing novel schemes in solution-phase spin chemistry that are driven by the dynamic PSS process in compact oligometallic arrays.
  •  
8.
  • Nguyen, Thinh Luong The, et al. (författare)
  • Molecular Linking Selectivity on Self-Assembled Metal-Semiconductor Nano-Hybrid Systems
  • 2020
  • Ingår i: Nanomaterials. - : MDPI. - 2079-4991. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmonics nanoparticles gained prominence in the last decade in fields of photonics, solar energy conversion and catalysis. It has been shown that anchoring the plasmonics nanoparticles on semiconductors via a molecular linker reduces band bending and increases hot carriers' lifetime, which is essential for the development of efficient photovoltaic devices and photocatalytic systems. Aminobenzoic acid is a commonly used linker to connect the plasmonic metal to an oxide-based semiconductor. The coordination to the oxide was established to occur via the carboxylic functional group, however, it remains unclear what type of coordination that is established with the metal site. Herein, it is demonstrated that metal is covalently bonded to the linker via the amino group, as supported by Surface-Enhanced Resonant Raman and infrared spectroscopies. The covalent linkage increases significantly the amount of silver grafted, resulting in an improvement of the system catalytic proficiency in the 4-nitrophenol (4-NP) photoreduction.
  •  
9.
  • Tang, Yingying, et al. (författare)
  • Highly Stable Perovskite Supercrystals via Oil-in-Oil Templating
  • 2020
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 20:8, s. 5997-6004
  • Tidskriftsartikel (refereegranskat)abstract
    • Inorganic perovskites display an enticing foreground for their wide range of optoelectronic applications. Recently, supercrystals (SCs) of inorganic perovskite nanocrystals (NCs) have been reported to possess highly ordered structure as well as novel collective optical properties, opening new opportunities for efficient films. Here, we report the large-scale assembly control of spherical, cubic, and hexagonal SCs of inorganic perovskite NCs through templating by oil-in-oil emulsions. We show that an interplay between the roundness of the cubic NCs and the tension of the confining droplet surface sets the superstructure morphology, and we exploit this interplay to design dense hyperlattices of SCs. The SC films show strongly enhanced stability for at least two months without obvious structural degradation and minor optical changes. Our results on the controlled large-scale assembly of perovskite NC superstructures provide new prospects for the bottom-up production of optoelectronic devices based on the microfluidic production of mesoscopic building blocks.
  •  
10.
  • van Turnhout, Lars, et al. (författare)
  • Direct Observation of a Plasmon-Induced Hot Electron Flow in a Multimetallic Nanostructure
  • 2020
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; , s. 8220-8228
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmon hot carriers are interesting for photoredox chemical synthesis but their direct utilization is limited by their ultrafast thermalization. Therefore, they are often transferred to suitable accepting materials that expedite their lifetime. Solid-state photocatalysts are technologically more suitable than their molecular counterparts, but their photophysical processes are harder to follow due to the absence of clear optical fingerprints. Herein, the journey of hot electrons in a solid-state multimetallic photocatalyst is revealed by a combination of ultrafast visible and infrared spectroscopy. Dynamics showed that electrons formed upon silver plasmonic excitation reach the gold catalytic site within 700 fs and the electron flow could also be reversed. Gold is the preferred site until saturation of its 5d band occurs. Silver-plasmon hot electrons increased the rate of nitrophenol reduction 16-fold, confirming the preponderant role of hot electrons in the overall catalytic activity and the importance to follow hot carriers' journeys in solid-state photosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy