SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zheng Jie) ;srt2:(2020);pers:(Lin Weihua)"

Sökning: WFRF:(Zheng Jie) > (2020) > Lin Weihua

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Yang, et al. (författare)
  • Defect State Assisted Z-scheme Charge Recombination in Bi2O2CO3/Graphene Quantum Dot Composites for Photocatalytic Oxidation of NO
  • 2020
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 3:1, s. 772-781
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we explored the photoinduced charge carriers dynamics rationalizing the photocatalytic oxidation of NO over N-doped Bi2O2CO3/graphene quantum dots composites(N-BOC/GQDs) via time-resolved photoluminescence (TRPL). Under visible light illumination, only GQDs can be photoexcited and inject electrons to N-BOC within 0.5 ns. Under UV light irradiation, the interfacial Z-scheme heterojunction recombination between the electrons in N-BOC and holes in GQDs dominate the depopulation of excited states within 0.36 ns. Such efficient Z-scheme recombination regardless of the large energy difference (1.66 eV) is mediated by the interfacial oxygen vacany defect states characterized by both density functional theory calculations (DFT) and electron paramagnetic resonance (EPR) measurement. This finding provide a novel strategic view to improve the photocatalytic performance of the nanocomposite by interfacial engineering
  •  
2.
  • Li, Chuanshuai, et al. (författare)
  • Electron Transfer Mediated by Iron Carbonyl Clusters Enhance Light-Driven Hydrogen Evolution in Water by Quantum Dots
  • 2020
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 13:12, s. 3252-3260
  • Tidskriftsartikel (refereegranskat)abstract
    • Photocatalytic water splitting has become a promising strategy for converting solar energy into clean and carbon-neutral solar fuels in a low-cost and environmentally benign way. Hydrogen gas is such a potential solar fuel/energy carrier. In a classical artificial photosynthetic system, a photosensitizer is generally associated with a co-catalyst to convert photogenerated charge into (a) chemical bond(s). In the present study, assemblies consisting of CdSe quantum dots that are coupled with one of two molecular complexes/catalysts, that is, [Fe2S2(CO)6] or [Fe3Te2(CO)9], using an interface-directed approach, have been tested as catalytic systems for hydrogen production in aqueous solution/organic solution. In the presence of ascorbic acid as a sacrificial electron donor and proton source, these assemblies exhibit enhanced activities for the rate of hydrogen production under visible light irradiation for 8 h in aqueous solution at pH 4.0 with up to 110 μmol of H2 per mg of assembly, almost 8.5 times that of pure CdSe quantum dots under the same conditions. Transient absorption and time-resolved photoluminescence spectroscopies have been used to investigate the charge carrier transfer dynamics in the quantum dot/iron carbonyl cluster assemblies. The spectroscopic results indicate that effective electron transfer from the molecular iron complex to the valence band of the excited CdSe quantum dots significantly inhibits the recombination of photogenerated charge carriers, boosting the photocatalytic activity for hydrogen generation; that is, the iron clusters function as effective intermediaries for electron transfer from the sacrificial electron donor to the valence band of the quantum dots.
  •  
3.
  • Liang, Mingli, et al. (författare)
  • Electronic Structure and Trap States of Two-Dimensional Ruddlesden–Popper Perovskites with the Relaxed Goldschmidt Tolerance Factor
  • 2020
  • Ingår i: ACS Applied Electronic Materials. - : American Chemical Society (ACS). - 2637-6113. ; 2:5, s. 1402-1412
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional Ruddlesden–Popper perovskites (2D RPPs) have been considered as promising building blocks for optoelectronic applications owing to optical properties comparable to the ones of 3D perovskites, together with superior stability. In addition, the more flexible structure adopted by such perovskites leads to a relaxation of the Goldschmidt tolerance factor (τ) requirement. Herein, we compare the crystalline and electronic structures, as well as the photophysics of two 2D perovskite single crystals (n-BA)2(MA)2Pb3I10 (BMAPI) and (n-BA)2(EA)2Pb3I10 (BEAPI) (n-BA = n-butylamine) containing small A-cations (MA, methylammonium) and large A-cations (EA, ethylammonium), respectively. The latter presents a relaxed τ (τEA > 1) compared with the requirement of a stable phase in 3D perovskites (τ < 1). Such relaxed τ is beneficial from the structural flexibility of the long organic cation bilayer and the pronounced lattice distortions in the 2D perovskite structures. We further elucidate how the greater lattice distortions concurrently modulate the electronic structure as well as trap densities in these 2D RPPs. The electronic band gap (Eg) of BEAPI (2.08 ± 0.03 eV) is ∼0.17 eV larger than the one of BMAPI (1.91 ± 0.03 eV). This is mainly because of a shift in the valence band maximum associated with the expansion of the Pb–I bond length in BEAPI. In addition, the overall trap state densities for BMAPI and BEAPI are calculated to be ∼2.18 × 1016 and ∼3.76 × 1016 cm–3, respectively, as extracted from the time-resolved photoluminescence studies. The larger trap density in BEAPI can be attributed to the stronger interfacial lattice distortion that sets in when large EA cations are contained into the inorganic crystal lattice.
  •  
4.
  • Meng, Jie, et al. (författare)
  • Modulating Charge-Carrier Dynamics in Mn-Doped All-Inorganic Halide Perovskite Quantum Dots through the Doping-Induced Deep Trap States
  • 2020
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 11:9, s. 3705-3711
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition-metal ion doping has been demonstrated to be effective for tuning the photoluminescence properties of perovskite quantum dots (QDs). However, it would inevitably introduce defects in the lattice. As the Mn concentration increases, the Mn dopant photoluminescence quantum yield (PLQY) first increases and then decreases. Herein the influence of the dopant and the defect states on the photophysics in Mn-doped CsPbCl3 QDs was studied by time-resolved spectroscopies, whereas the energy levels of the possible defect states were analyzed by density functional theory calculations. We reveal the formation of deep interstitials defects (Cli) by Mn2+ doping. The depopulation of initial QD exciton states is a competition between exciton-dopant energy transfer and defect trapping on an early time scale (<100 ps), which determines the final PLQY of the QDs. The present work establishes a robust material optimization guideline for all of the emerging applications where a high PLQY is essential.
  •  
5.
  • Naumova, Maria A., et al. (författare)
  • Exploring the light-induced dynamics in solvated metallogrid complexes with femtosecond pulses across the electromagnetic spectrum
  • 2020
  • Ingår i: The Journal of chemical physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 152:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligonuclear complexes of d4-d7 transition metal ion centers that undergo spin-switching have long been developed for their practical role in molecular electronics. Recently, they also have appeared as promising photochemical reactants demonstrating improved stability. However, the lack of knowledge about their photophysical properties in the solution phase compared to mononuclear complexes is currently hampering their inclusion into advanced light-driven reactions. In the present study, the ultrafast photoinduced dynamics in a solvated [2 × 2] iron(II) metallogrid complex are characterized by combining measurements with transient optical-infrared absorption and x-ray emission spectroscopy on the femtosecond time scale. The analysis is supported by density functional theory calculations. The photocycle can be described in terms of intra-site transitions, where the FeII centers in the low-spin state are independently photoexcited. The Franck-Condon state decays via the formation of a vibrationally hot high-spin (HS) state that displays coherent behavior within a few picoseconds and thermalizes within tens of picoseconds to yield a metastable HS state living for several hundreds of nanoseconds. Systematic comparison with the closely related mononuclear complex [Fe(terpy)2]2+ reveals that nuclearity has a profound impact on the photoinduced dynamics. More generally, this work provides guidelines for expanding the integration of oligonuclear complexes into new photoconversion schemes that may be triggered by ultrafast spin-switching.
  •  
6.
  • Naumova, Maria A., et al. (författare)
  • Revealing Hot and Long-Lived Metastable Spin States in the Photoinduced Switching of Solvated Metallogrid Complexes with Femtosecond Optical and X-ray Spectroscopies
  • 2020
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 11:6, s. 2133-2141
  • Tidskriftsartikel (refereegranskat)abstract
    • An atomistic understanding of the photoinduced spin-state switching (PSS) within polynuclear systems of d4-d7 transition metal ion complexes is required for their rational integration into light-driven reactions of chemical and biological interest. However, in contrast to mononuclear systems, the multidimensional dynamics of the PSS in solvated molecular arrays have not yet been elucidated due to the expected complications associated with the connectivity between the metal centers and the strong interactions with the surroundings. In this work, the PSS in a solvated triiron(II) metallogrid complex is characterized using transient optical absorption and X-ray emission spectroscopies on the femtosecond time scale. The complementary measurements reveal the photoinduced creation of energy-rich (hot) and long-lived quintet states, whose dynamics differ critically from their mononuclear congeners. This finding opens major prospects for developing novel schemes in solution-phase spin chemistry that are driven by the dynamic PSS process in compact oligometallic arrays.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy