SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zheng Wei) ;lar1:(cth)"

Sökning: WFRF:(Zheng Wei) > Chalmers tekniska högskola

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
3.
  • Weinstein, John N., et al. (författare)
  • The cancer genome atlas pan-cancer analysis project
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:10, s. 1113-1120
  • Forskningsöversikt (refereegranskat)abstract
    • The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile. © 2013 Nature America, Inc. All rights reserved.
  •  
4.
  • Zheng, L. R., et al. (författare)
  • Network Structured SnO2/ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity
  • 2009
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 48:5, s. 1819-1825
  • Tidskriftsartikel (refereegranskat)abstract
    • A network-structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity was successfully synthesized through a simple two-step solvothermal method. The as-synthesized samples are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, N-2 physical adsorption, and UV-vis spectroscopy. The results show that the SnO2/ZnO sample with a molar ratio of Sn/Zn = 1 is a mesoporous composite material composed of SnO2 and ZnO. The photocatalytic activity of SnO2/ZnO heterojunction nanocatalysts for the degradation of methyl orange is much higher than those of solvothermally synthesized SnO2 and ZnO samples, which can be attributed to the SnO2-ZnO heterojunction, the pore structure, and higher Brunauer-Emmeff-Teller (BET) surface area of the sample: (1) The SnO2-ZnO heterojunction improves the separation of photogenerated electron-hole pairs due to the potential energy differences between SnO2 and ZnO, thus enhancing the photocatalytic activity. (2) The SnO2/ZnO sample might possess more surface reaction sites and adsorb and transport more dye molecules due to the higher BET surface area and many pore channels, also leading to higher photocatalytic activity.
  •  
5.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
6.
  • Kim, Jae-Young, et al. (författare)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
7.
  • Zhang, Fengling, et al. (författare)
  • Ordered mesoporous Ag-TiO2-KIT-6 heterostructure: synthesis, characterization and photocatalysis
  • 2009
  • Ingår i: Journal of Materials Chemistry. - : Royal Society of Chemistry (RSC). - 1364-5501 .- 0959-9428. ; 19:18, s. 2771-2777
  • Tidskriftsartikel (refereegranskat)abstract
    • Ordered mesoporous Ag-TiO2-KIT-6 heterostructured nanocrystals were successfully synthesized by a template-based method, where a layer of TiO2 and Ag2O nanoparticles were deposited on cubic (Ia3d) silica (KIT-6) in an orderly manner; at the same time, the formed Ag2O nanoparticles were photolyzed to metallic Ag nanoparticles. Our results show that Ag-TiO2-KIT-6 is an ordered mesoporous composite material, which is composed of Ag-TiO2 heterostructures and the amorphous KIT-6 template. In addition, Ag-TiO2-KIT-6 possesses the highest photocatalytic activity among the as-synthesized photocatalysts, which can be attributed to the Ag-TiO2 heterojunctions and the excellent texture: (1) Ag-TiO2 heterojunctions improve the separation of photogenerated electron-hole pairs due to the potential energy differences between Ag and TiO2 nanocrystals, thus enhancing the photocatalytic activity; (2) the Ag-TiO2-KIT-6 sample possesses a high BET surface area and a large number of ordered pore channels, which facilitate adsorption and transportation of dye molecules, also leading to higher photocatalytic activity. It was also found that the Ag-TiO2 heterostructure plays a more important role in enhancing the photocatalytic activity than high BET surface area.
  •  
8.
  • Zheng, Y. H., et al. (författare)
  • Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: Correlation between structure and property
  • 2008
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 112:29, s. 10773-10777
  • Tidskriftsartikel (refereegranskat)abstract
    • Ag/ZnO heterostructure nanocatalysts with Ag content of 1 wt % are successfully prepared through three different simple methods, where chemical reduction and photolysis reaction are adopted to fabricate the heterostructure. The dispersity of Ag clusters and/or nanoparticles in Ag/ZnO nanocatalyst is investigated by EDX mapping and XPS techniques. The experimental results show that deposition-precipitation is an efficient method to synthesize Ag/ZnO nanocatalyst with highly dispersed Ag clusters and/or nanoparticles; the photocatalytic activity of Ag/ZnO photocatalysts mainly depends on the dispersity of metallic Ag in Ag/ZnO nanocatalyst; the higher the dispersity of metallic Ag in Ag/ZnO nanocatalyst is, the higher the photocatalytic activity of Ag/ZnO photocatalyst should be. In addition, it is also found that the dispersity of Ag/ZnO photocatalyst in the dye solution is another key factor for liquid-phase photocatalysis due to the UV-light utilizing efficiency. The higher the UV-light utilizing efficiency is, the higher the photocatalytic activity of Ag/ZnO heterostructure photocatalyst should be.
  •  
9.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of similar to 40 mu as, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others' work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to avoid shared human bias and to assess common features among independent reconstructions. In the second stage, we reconstructed synthetic data from a large survey of imaging parameters and then compared the results with the corresponding ground truth images. This stage allowed us to select parameters objectively to use when reconstructing images of M87. Across all tests in both stages, the ring diameter and asymmetry remained stable, insensitive to the choice of imaging technique. We describe the EHT imaging procedures, the primary image features in M87, and the dependence of these features on imaging assumptions.
  •  
10.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy