SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhmoginov A. I.) "

Sökning: WFRF:(Zhmoginov A. I.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmadi, M., et al. (författare)
  • An improved limit on the charge of antihydrogen from stochastic acceleration
  • 2016
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 529:7586, s. 373-
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms(1-4) of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of vertical bar Q vertical bar &lt; 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement(5) of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known(6) to be no greater than about 10(-21)e for a diverse range of species including H-2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation(7) demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge(8), then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement(8),(9).</p>
  •  
2.
  • Amole, C., et al. (författare)
  • An experimental limit on the charge of antihydrogen
  • 2014
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 5, s. 3955
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The properties of antihydrogen are expected to be identical to those of hydrogen, and any differences would constitute a profound challenge to the fundamental theories of physics. The most commonly discussed antiatom- based tests of these theories are searches for antihydrogen- hydrogen spectral differences (tests of CPT (charge- parity- time) invariance) or gravitational differences (tests of the weak equivalence principle). Here we, the ALPHA Collaboration, report a different and somewhat unusual test of CPT and of quantum anomaly cancellation. A retrospective analysis of the influence of electric fields on antihydrogen atoms released from the ALPHA trap finds a mean axial deflection of 4.1 +/- 3.4mm for an average axial electric field of 0.51Vmm1. Combined with extensive numerical modelling, this measurement leads to a bound on the charge Qe of antihydrogen of Q (+/- 1.3 +/- 1.1 +/- 0.4)10 8. Here, e is the unit charge, and the errors are from statistics and systematic effects.</p>
  •  
3.
  • Amole, C., et al. (författare)
  • Autoresonant-spectrometric determination of the residual gas composition in the ALPHA experiment apparatus
  • 2013
  • Ingår i: Review of Scientific Instruments. - 0034-6748 .- 1089-7623. ; 84:6, s. 065110
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Knowledge of the residual gas composition in the ALPHA experiment apparatus is important in our studies of antihydrogen and nonneutral plasmas. A technique based on autoresonant ion extraction from an electrostatic potential well has been developed that enables the study of the vacuum in our trap. Computer simulations allow an interpretation of our measurements and provide the residual gas composition under operating conditions typical of those used in experiments to produce, trap, and study antihydrogen. The methods developed may also be applicable in a range of atomic and molecular trap experiments where Penning-Malmberg traps are used and where access is limited.</p>
  •  
4.
  • Amole, C., et al. (författare)
  • Experimental and computational study of the injection of antiprotons into a positron plasma for antihydrogen production
  • 2013
  • Ingår i: Physics of Plasmas. - 1070-664X .- 1089-7674. ; 20:4, s. 043510
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>One of the goals of synthesizing and trapping antihydrogen is to study the validity of charge-parity-time symmetry through precision spectroscopy on the anti-atoms, but the trapping yield achieved in recent experiments must be significantly improved before this can be realized. Antihydrogen atoms are commonly produced by mixing antiprotons and positrons stored in a nested Penning-Malmberg trap, which was achieved in ALPHA by an autoresonant excitation of the antiprotons, injecting them into the positron plasma. In this work, a hybrid numerical model is developed to simulate antiproton and positron dynamics during the mixing process. The simulation is benchmarked against other numerical and analytic models, as well as experimental measurements. The autoresonant injection scheme and an alternative scheme are compared numerically over a range of plasma parameters which can be reached in current and upcoming antihydrogen experiments, and the latter scheme is seen to offer significant improvement in trapping yield as the number of available antiprotons increases.</p>
  •  
5.
  • Charman, A. E., et al. (författare)
  • Description and first application of a new technique to measure the gravitational mass of antihydrogen
  • 2013
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for anti-hydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen 475 at a statistical significance level of 5%; worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy