SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhu B) ;hsvcat:2"

Sökning: WFRF:(Zhu B) > Teknik

  • Resultat 1-10 av 69
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Bigdeli, Sedigheh, et al. (författare)
  • An insight into using DFT data for Calphad modeling of solid phases in the third generation of Calphad databases, a case study for Al
  • 2019
  • Ingår i: Calphad. - : Elsevier. - 0364-5916 .- 1873-2984. ; 65, s. 79-85
  • Tidskriftsartikel (refereegranskat)abstract
    • In developing the next generation of Calphad databases, new models are used in which each term contributing to the Gibbs energy has a physical meaning. To continue the development, finite temperature density-functional-theory (DFT) results are used in the present work to discuss and suggest the most applicable and physically based model for Calphad assessments of solid phases above the melting point (the breakpoint for modeling the solid phase in previous assessments). These results are applied to investigate the properties of a solid in the superheated temperature region and to replace the melting temperature as the breakpoint with a more physically based temperature, i.e., where the superheated solid collapses into the liquid. The advantages and limitations of such an approach are presented in terms of a new assessment for unary aluminum.
  •  
3.
  • De Gouw, J. A., et al. (författare)
  • Airborne Measurements of Ethene from Industrial Sources Using Laser Photo-Acoustic Spectroscopy
  • 2009
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 43:7, s. 2437-2442
  • Tidskriftsartikel (refereegranskat)abstract
    • A laser photoacoustic spectroscopy (LPAS) instrument was developed and used for aircraft measurements of ethene from industrial sources near Houston, Texas. The instrument provided 20 s measurements with a detection limit of less than 0.7 ppbv. Data from this instrument and from the GC-FID analysis of air samples collected in flight agreed within 15% on average. Ethene fluxes from the Mt. Belvieu chemical complex to the northeast of Houston were quantified during 10 different flights. The average flux was 520 +/- 140 kg h(-1) in agreement with independent results from solar occultation flux (SOF) measurements, and roughly an order of magnitude higher than regulatory emission inventories indicate. This study shows that ethene emissions are routinely at levels that qualify as emission upsets, which need to be reported to regional air quality managers.
  •  
4.
  • Tang, Z. G., et al. (författare)
  • SDC-LiNa carbonate composite and nanocomposite electrolytes
  • 2010
  • Ingår i: International Journal of Hydrogen Energy. - : Elsevier BV. - 0360-3199 .- 1879-3487. ; 35:7, s. 2970-2975
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural and A.C. impedance analyses were conducted for various ceria-based composite systems. Structural studies showed that the ceria-carbonate composites are two-phase materials, where carbonates were often amorphous. Two phases of ceria and carbonates are mixed at different particle size levels depending on the preparation techniques, especially, employing the NANOCOFC (nanocomposites for advanced fuel cell technology) approach to prepare ceria-LiNaCO3 nanocomposites. General observations from structural analyses are that different preparation techniques resulted in two-phase composite particles in different particle sizes varying from micrometer level to nano-level accompanying also different homogeneity. General observations from impedance analyses are that for the nanocomposites (particle size at nano-scale) more complex grain boundary interface effects are observed compared to that for samples with grains of the micrometer level, but nanocomposites showed enhanced conductivities at the low temperatures. Interfaces and interfacial conduction mechanism can be concluded for such conductivity enhancement. Crown Copyright (C) 2009 Published by Elsevier Ltd on behalf of Professor T. Nejat Veziroglu. All rights reserved.
  •  
5.
  • Zhiwei, Zhu, 1985, et al. (författare)
  • Expanding the product portfolio of fungal type I fatty acid synthases
  • 2017
  • Ingår i: Nature Chemical Biology. - : Springer Science and Business Media LLC. - 1552-4450 .- 1552-4469. ; 13:4, s. 360-362
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungal type I fatty acid synthases (FASs) are mega-enzymes with two separated, identical compartments, in which the acyl carrier protein (ACP) domains shuttle substrates to catalytically active sites embedded in the chamber wall. We devised synthetic FASs by integrating heterologous enzymes into the reaction chambers and demonstrated their capability to convert acyl-ACP or acyl-CoA from canonical fatty acid biosynthesis to short/ medium-chain fatty acids and methyl ketones.
  •  
6.
  • Hu, Enyi, et al. (författare)
  • Junction and energy band on novel semiconductor-based fuel cells
  • 2021
  • Ingår i: iScience. - : Elsevier BV. - 2589-0042. ; 24:3
  • Forskningsöversikt (refereegranskat)abstract
    • Fuel cells are highly efficient and green power sources. The typical membrane electrode assembly is necessary for common electrochemical devices. Recent research and development in solid oxide fuel cells have opened up many new opportunities based on the semiconductor or its heterostructure materials. Semiconductor-based fuel cells (SBFCs) realize the fuel cell functionality in a much more straightforward way. This work aims to discuss new strategies and scientific principles of SBFCs by reviewing various novel junction types/interfaces, i.e., bulk and planar p-n junction, Schottky junction, and n-i type interface contact. New designing methodologies of SBFCs from energy band/alignment and built-in electric field (BIEF), which block the internal electronic transport while assisting interfacial superionic transport and subsequently enhance device performance, are comprehensively reviewed. This work highlights the recent advances of SBFCs and provides new methodology and understanding with significant importance for both fundamental and applied R&D on new-generation fuel cell materials and technologies.
  •  
7.
  • Hu, Yating, 1991, et al. (författare)
  • Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals
  • 2019
  • Ingår i: Open Biology. - : The Royal Society. - 2046-2441. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals, in particular ethanol, a biofuel produced in large quantities. With a need for high-energy-density fuels for jets and heavy trucks, there is, however, much interest in the biobased production of hydrocarbons that can be derived from fatty acids. Fatty acids also serve as precursors to a number of oleochemicals and hence provide interesting platform chemicals. Here, we review the recent strategies applied to metabolic engineering of S. cerevisiae for the production of fatty acid-derived biofuels and for improvement of the titre, rate and yield (TRY). This includes, for instance, redirection of the flux towards fatty acids through engineering of the central carbon metabolism, balancing the redox power and varying the chain length of fatty acids by enzyme engineering. We also discuss the challenges that currently hinder further TRY improvements and the potential solutions in order to meet the requirements for commercial application.
  •  
8.
  • Zhou, Yongjin, 1984, et al. (författare)
  • Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 7, s. 11709-11709
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g/L of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg /L) and fatty alcohols (1.5 g/L), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value.
  •  
9.
  • Raza, Rizwan, 1980, et al. (författare)
  • Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell: A comprehensive review
  • 2020
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 15
  • Forskningsöversikt (refereegranskat)abstract
    • There is world tendency to develop SOFC to lower temperatures and two technical routes and approaches are going in parallel. One is to use thin film technology, focussing on reducing the electrolyte thickness on conventional electrolyte, e.g. YSZ (yttria-stabilized zirconia) and SDC (samaria-doped ceria) to reduce the cell resistance i.e. to lower the operational temperatures. Another technique is to develop new materials, e.g. functional nanocomposites. This paper presents a state-of-the-art of nanocomposite electrolytes-based advanced fuel cell technology, i.e. low-temperature (300–600 °C) ceria-based fuel cells, a new scenario for fuel cell R&D with an overview of important aspects and frontier subjects. A typical nanocomposite has a core–shell type structure in nano-scale, in which ceria forms a core and a salt, e.g. carbonate or another oxide develops a shell layer covering the core. The functionality of nanocomposites is determined by the interfaces between the constituent phases, which can lead to super or fast ions transport (H+ and O2−) at interfaces. Ionic conductivities >0.1 S cm−1 already at ~300 °C have been reported. Five major characteristics of nanocomposites have been identified as important to their properties and applications in fuel cells: i) advanced materials design based on non-structure or interfacial properties/mechanisms; ii) dual or hybrid H+ and O2− conduction; iii) interfacial super-ionic conduction; iv) transition from non-functional to functional materials; v) use of interfacial and surface redox agents and reactions. In the fuel cell context, it is refer to these functional nano-composites as NANOCOFC (Nanocomposites for Advanced Fuel Cells) to distinguish them from the traditional SOFCs and to be oriented to a new fuel cell R&D strategy.
  •  
10.
  • Xu, K., et al. (författare)
  • Graphene GaN-Based Schottky Ultraviolet Detectors
  • 2015
  • Ingår i: IEEE Transactions on Electron Devices. - : Institute of Electrical and Electronics Engineers (IEEE). - 1557-9646 .- 0018-9383. ; 62:9, s. 2802-2808
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene GaN-based Schottky ultraviolet detectors are fabricated. The monolayer graphene is grown by chemical vapor deposition. The graphene is much more transparent than metals, as confirmed by the fact that our devices retain their high responsivity up to 360-nm wavelength (corresponding to the band edge absorption of GaN). Importantly, by virtue of the tunable work function of graphene, the graphene GaN Schottky barrier height can be greatly enlarged. The built-in field is enhanced, and the detector performance is improved. The current ratio with and without luminescence is up to 1.6 x 10(4). The characteristic time constants of the devices are in the order of a few milliseconds. The device open-circuit voltage and short-circuit current are also increased. At last, special type Schottky devices consisting of GaN nanorods or surface-etched GaN are prepared for complementary study. It is found although the dry etching induced surface defects lead to an increase in the dark current, and these carrier traps also greatly contribute to the photoconductivity under luminescence, resulting in extraordinarily large responsivity (up to 360 A/W at -6 V).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 69
Typ av publikation
tidskriftsartikel (49)
konferensbidrag (15)
forskningsöversikt (2)
bokkapitel (2)
annan publikation (1)
Typ av innehåll
refereegranskat (65)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Zhu, B. (21)
Zhu, Bin (12)
Nielsen, Jens B, 196 ... (8)
Jonsson, Stefan (5)
Raza, Rizwan (4)
Wang, B. (4)
visa fler...
Afzal, Muhammad (4)
Wang, H. (3)
Kim, J. S. (3)
Zhu, X. (3)
Qin, Haiying (3)
Ali, A. (3)
Zhu, K. (3)
Xia, Chen (3)
Lund, P. D. (3)
Wu, Y. (2)
Zhang, J. (2)
Zhao, Y. (2)
Li, X. (2)
Xu, C. (2)
Kim, J. (2)
Wang, Y. (2)
Zhang, B. (2)
He, Y. (2)
Shao, Lijing (2)
Zhang, C. (2)
Kim, Jae-Young (2)
Raza, R. (2)
Salmanzadeh, Mazyar (2)
Rafique, A. (2)
Wang, Ergang, 1981 (2)
Mushtaq, N. (2)
Dong, W. (2)
Akiyama, Kazunori (2)
Alberdi, Antxon (2)
Alef, Walter (2)
Ball, David (2)
Baloković, Mislav (2)
Barrett, John (2)
Bintley, Dan (2)
Blackburn, Lindy (2)
Brissenden, Roger (2)
Britzen, Silke (2)
Broderick, Avery E. (2)
Bronzwaer, Thomas (2)
Byun, Do Young (2)
Chan, Chi Kwan (2)
Chatterjee, Koushik (2)
Chen, Ming Tang (2)
Chen, Yongjun (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (34)
Chalmers tekniska högskola (30)
Mälardalens universitet (4)
Göteborgs universitet (2)
Linköpings universitet (2)
Umeå universitet (1)
visa fler...
Uppsala universitet (1)
Luleå tekniska universitet (1)
Stockholms universitet (1)
Lunds universitet (1)
RISE (1)
Karlstads universitet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (69)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (17)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy