SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhu Bin) srt2:(2010-2014);pers:(Abbas Ghazanfar)"

Sökning: WFRF:(Zhu Bin) > (2010-2014) > Abbas Ghazanfar

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Qin, Haiying, et al. (författare)
  • Direct biofuel low-temperature solid oxide fuel cells
  • 2011
  • Ingår i: ENERGY & ENVIRONMENTAL SCIENCE. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 4:4, s. 1273-1276
  • Tidskriftsartikel (refereegranskat)abstract
    • A low-temperature solid oxide fuel cell system was developed to use bioethanol and glycerol as fuels directly. This system achieved a maximum power density of 215 mW cm(-2) by using glycerol at 580 degrees C and produced a great impact on sustainable energy and the environment.
  •  
2.
  • Abbas, Ghazanfar, et al. (författare)
  • Electrochemical study of nanostructured electrode for low-temperature solid oxide fuel cell (LTSOFC)
  • 2014
  • Ingår i: International Journal of Energy Research. - : Hindawi Limited. - 0363-907X .- 1099-114X. ; 38:4, s. 518-523
  • Tidskriftsartikel (refereegranskat)abstract
    • Zn-based nanostructured Ba0.05Cu0.25Fe0.10Zn0.60O (BCFZ) oxide electrode material was synthesized by solid-state reaction for low-temperature solid oxide fuel cell. The cell was fabricated by sandwiching NK-CDC electrolyte between BCFZ electrodes by dry press technique, and its performance was assessed. The maximum power density of 741.87 mW-cm(-2) was achieved at 550 degrees C. The crystal structure and morphology were characterized by X-ray diffractometer (XRD) and SEM. The particle size was calculated to be 25 nm applying Scherer's formula from XRD data. Electronic conductivities were measured with the four-probe DC method under hydrogen and air atmosphere. AC Electrochemical Impedance Spectroscopy of the BCFZ oxide electrode was also measured in hydrogen atmosphere at 450 degrees C.
  •  
3.
  • Abbas, Ghazanfar, et al. (författare)
  • Preparation and characterization of nanocomposite calcium doped ceria electrolyte with alkali carbonates (NK-CDC) for SOFC
  • 2010
  • Ingår i: ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2010. - : ASME Press. - 9780791844052 ; , s. 427-432
  • Konferensbidrag (refereegranskat)abstract
    • The entire world's challenge is to find out the renewable energy sources due to rapid depletion of fossil fuels because of their high consumption. Solid Oxide Fuel Cells (SOFCs) are believed to be the best alternative source which converts chemical energy into electricity without combustion. Nanostructured study is required to develop highly ionic conductive electrolyte for SOFCs. In this work, the calcium doped ceria (Ce0.8Ca0.2O 1.9) coated with 20% molar ratio of two alkali carbonates (CDC-M: MCO3, where M= Na and K) electrolyte was prepared by co-precipitation method in this study. Ni based electrode was used to fabricate the cell by dry pressing technique. The crystal structure and surface morphology was characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). The particle size was calculated in the range of 10-20nm by Scherrer's formula and compared with SEM and TEM results. The ionic conductivity was measured by using AC Electrochemical Impedance Spectroscopy (EIS) method. The activation energy was also evaluated. The performance of the cell was measured 0.567W/cm2 at temperature 550°C with hydrogen as a fuel.
  •  
4.
  • Abbas, Ghazanfar, et al. (författare)
  • Preparation and Characterization of Nanocomposite Calcium Doped Ceria Electrolyte With Alkali Carbonates (NK-CDC) for SOFC
  • 2011
  • Ingår i: Journal of Fuel Cell Science and Technology. - : ASME International. - 1550-624X .- 1551-6989. ; 8:4, s. 041013-
  • Tidskriftsartikel (refereegranskat)abstract
    • The entire world's challenge is to find out the renewable energy sources due to rapid depletion of fossil fuels because of their high consumption. Solid oxide fuel cells (SOFCs) are believed to be the best alternative source, which converts chemical energy into electricity without combustion. Nanostructure study is required to develop highly ionic conductive electrolytes for SOFCs. In this work, the calcium doped ceria (Ce0.8Ca0.2O1.9) coated with 20% molar ratio of two alkali carbonates (CDC-M: MCO3, where M = Na and K) electrolyte was prepared by coprecipitation method. Ni based electrode was used to fabricate the cell by dry pressing technique. The crystal structure and surface morphology were characterized by an X-ray diffractometer, scanning electron microscopy (SEM), and high resolution transmission electron microscopy (TEM). The particle size was calculated in the range 10-20 nm by Scherer's formula and compared with SEM and TEM results. The ionic conductivity was measured by using ac electrochemical impedance spectroscopy method. The activation energy was also evaluated. The performance of the cell was measured 0.567 W/cm(2) at temperature 550 degrees C with hydrogen as a fuel.
  •  
5.
  • Abbas, Ghazanfar, et al. (författare)
  • Study of CuNiZnGdCe-Nanocomposite Anode for Low Temperature SOFC
  • 2012
  • Ingår i: Nanoscience and Nanotechnology Letters. - : American Scientific Publishers. - 1941-4900 .- 1941-4919. ; 4:4, s. 389-393
  • Tidskriftsartikel (refereegranskat)abstract
    • Composite electrodes of Cu0.16Ni0.27Zn0.37Ce0.16Gd0.04 (CNZGC) oxides have been successfully synthesized by solid state reaction method as anode material for low temperature solid oxide fuel cell (LTSOFC). These electrodes are characterized by XRD followed by sintering at various time periods and temperatures. Particle size of optimized composition was calculated 40-85 nm and sintered at 800 degrees C for 4 hours. Electrical conductivity of 4.14 S/cm was obtained at a temperature of 550 degrees C by the 4-prob DC method. The activation energy was calculated 4 x 10(-2) eV at 550 degrees C. Hydrogen was used as fuel and air as oxidant at anode and cathode sides respectively. I-V/I-P curves were obtained in the temperature range of 400-550 degrees C. The maximum power density was achieved for 570 mW/cm(2) at 550 degrees C.
  •  
6.
  • Imran, Syed Khalid, et al. (författare)
  • Characterization and Development of Bio-Ethanol Solid Oxide Fuel Cell
  • 2011
  • Ingår i: Journal of Fuel Cell Science and Technology. - : ASME International. - 1550-624X .- 1551-6989. ; 8:6, s. 061014-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bio-ethanol based fuel cell is an energy source with a promising future. The low temperature solid oxide fuel cell fed by direct bio-ethanol is receiving considerable attention as a clean and highly efficient for the production of both electricity and high grade waste heat. The comparison of fuel cell performance with different metal-oxide based electrodes was investigated. The power densities of 584 mW cm(-2) and 514 mW cm(-2) at 520 degrees C and 570 degrees C respectively were found. The effect of electrode catalyst function, ethanol concentration on the electrical performance was investigated at different temperature ranged in between 300 degrees C-600 degrees C. The effect of deposited carbon on the electrode was investigated by energy-dispersive X-ray spectroscopy and scanning electron microscope after testing the cell with bio-ethanol.
  •  
7.
  • Khan, M. Ajmal, et al. (författare)
  • Effect of titania concentration on the grain boundary conductivity of calcium-doped ceria electrolyte
  • 2014
  • Ingår i: Ceramics International. - : Elsevier BV. - 0272-8842 .- 1873-3956. ; 40:7, s. 9775-9781
  • Tidskriftsartikel (refereegranskat)abstract
    • A solid-state technique was used to synthesize ceria-based (CDC-xT, in which x=0-1 mol%) solid electrolyte ceramics. The effects of doping the ceramic solid electrolyte (CDC) with titanium oxide were studied with regard to densification, crystal structure, morphology, electro-impedance spectroscopy and fuel cell performance. TiO2 doping afforded materials a 95% relative density at 940 degrees C, approximately 200 degrees C lower than the temperature required without titanium oxide. The addition of titanium oxide (TiO2) reduced the CDC sintering temperature and significantly improved the grain boundary conduction. The minimum grain boundary resistivity was obtained at 0.8 mol% TiO2. X-ray diffraction (XRD) results showed that the lattice parameters enhanced with increased titanium oxide concentrations up to 0.8 mol%, revealing the solubility limit for Caria's fluorite structure. The optimum doping level (0.8 mol%) is provided maximum conductivity. Conductivities were measured using EIS (Electrochemical Impedance Spectroscopy) with a two-probe method, and the activation energies were calculated using the Arrhenius plots. The maximum power density (660 mW/cm(2)) was achieved with CDC 0.8T electrolyte at 650 degrees C using LiCuZnNi oxide electrodes.
  •  
8.
  • Raza, Rizwan, et al. (författare)
  • Electrochemical study of the composite electrolyte based on samaria-doped ceria and containing yttria as a second phase
  • 2011
  • Ingår i: Solid State Ionics. - : Elsevier BV. - 0167-2738 .- 1872-7689. ; 188:1, s. 58-63
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study is to develop new oxide ionic conductors based on nanocomposite materials for an advanced fuel cell (NANOCOFC) approach. The novel two phase nanocomposite oxide ionic conductors, Ce0.8Sm0.2O2-delta (SDC)-Y2O3 were synthesized by a co-precipitation method. The structure and morphology of the prepared electrolyte were investigated by means of X-ray diffraction (XRD) and high resolution scanning electron microscopy (HRSEM). XRD results showed a two phase composite consisting of yttrium oxide and samaria doped ceria and SEM results exhibited a nanostructure form of the sample. The yttrium oxide was used on the SDC as a second phase. The interface between two constituent phases and the ionic conductivities were studied with electrochemical impedance spectroscopy (EIS). An electrochemical study showed high oxide ion mobility and conductivity of the Y2O3-SDC two phase nanocomposite electrolytes at a low temperature (300-600 degrees C). Maximum conductivity (about 1.0 S cm(-1)) was obtained for the optimized Y2O3-SDC composite electrolyte at 600 degrees C. It is found that the nanocomposite electrolytes show higher conductivities with the increased concentration of yttrium oxides but decreases after reaching a certain level. A high fuel cell performance, 0.75 W cm(-2), was achieved at 580 degrees C.
  •  
9.
  • Raza, Rizwan, et al. (författare)
  • GDC-Y2O3 Oxide Based Two Phase Nanocomposite Electrolyte
  • 2011
  • Ingår i: JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY. - : ASME International. - 1550-624X .- 1551-6989. ; 8:4, s. 041012-
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxide based two phase composite electrolyte (Ce0.9Gd0.1O2-Y2O3) was synthesized by coprecipitation method. The nanocomposite electrolyte showed the significant performance of power density 785 mW cm(-2) and higher conductivities at relatively low temperature 550 degrees C. Ionic conductivities were measured with ac impedance spectroscopy and four-probe dc method. The structural and morphological properties of the prepared electrolyte were investigated by scanning electron microscope (SEM). The thermal stability was determined with differential scanning calorimetry. The particle size that was calculated with Scherrer formula, 15-20 nm, is in a good agreement with the SEM and X-ray diffraction results. The purpose of this study is to introduce the functional nanocomposite materials for advanced fuel cell technology to meet the challenges of solid oxide fuel cell.
  •  
10.
  • Raza, Rizwan, et al. (författare)
  • GDC-Y2O3 Oxide Based Two Phase Nanocomposite Electrolytes
  • 2010
  • Ingår i: PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 1. - NEW YORK : AMER SOC MECHANICAL ENGINEERS. - 9780791844045 ; , s. 365-370
  • Konferensbidrag (refereegranskat)abstract
    • An oxide based two phase nanocomposite electrolyte (Ce0.9Gd0.1O2) was synthesized by a co-precipitation method and coated with Yttrium oxide (Y2O3). The nanocomposite electrolyte showed the significant performance of power density 750mW/cm(2) and higher conductivities at relatively low temperature 550 degrees C. Ionic conductivities were measured with electrochemical impedance spectroscopy (EIS) and DC (4 probe method). The structural and morphological properties of the prepared electrolyte were investigated by means of High Resolution Scanning Electron Microscopy (HRSEM). The thermal stability was determined with Differential Scanning Calorimetry (DSC). The particle size was calculated with Scherrer formula and compare with SEM results, 15-20 nm is in a good agreement with the SEM and X-ray diffraction (XRD) results. The purpose of the study to introduce the functional nanocomposite materials, for advanced fuel cell technology (NANOCOFC) to meet the challenges of solid oxide fuel cell (SOFC).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy