SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhu Yi) ;pers:(Zhu Bin)"

Sökning: WFRF:(Zhu Yi) > Zhu Bin

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Zhaoming, et al. (författare)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:24, s. 6616-6633
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
2.
  • Cai, Yixiao, et al. (författare)
  • Bioderived Calcite as Electrolyte for Solid Oxide Fuel Cells : A Strategy toward Utilization of Waste Shells
  • 2017
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 5:11, s. 10387-10395
  • Tidskriftsartikel (refereegranskat)abstract
    • The excessive consumption of synthesized materials and enhanced environmental protection protocols necessitate the exploitation of desirable functionalities to handle our solid waste. Through a simple calcination and composite strategy, this work envisages the first application of biocalcite derived from the waste of crayfish shells as an electrolyte for solid oxide fuel cells (SOFCs), which demonstrates encouraging performances within a low temperature range of 450-550 degrees C. The single cell device, assembled from calcined waste shells at 600 degrees C (CWS600), enables a peak power density of 166 mW cm(-2) at 550 degrees C, and further renders 330 and 256 mW cm(-2) after compositing with perovskite La0.6Sr0.4Co0.8Fe0.2O3-delta (LSCF) and layer-structured LiNi0.8Co0.15Al0.05O2 (LNCA), respectively. Notably, an oxygen-ion blocking fuel cell is used to confirm the proton-conducting property of CWS600 associated electrolytes. The practical potential of the prepared fuel cells is also validated when the cell voltage of the cell is kept constant value over 10 h during a galvanostatic operation using a CWS600-LSCF electrolyte. These interesting findings may increase the likelihood of transforming our solid municipal waste into electrochemical energy devices, and also importantly, provide an underlying approach for discovering novel electrolytes for low-temperature SOFCs.
  •  
3.
  • Pu, Tingting, et al. (författare)
  • Steam/CO2 electrolysis in symmetric solid oxide electrolysis cell with barium cerate-carbonate composite electrolyte
  • 2016
  • Ingår i: Electrochimica Acta. - : Elsevier. - 0013-4686 .- 1873-3859. ; 190, s. 193-198
  • Tidskriftsartikel (refereegranskat)abstract
    • A composite electrolyte, Zr doped BaCe0.8Y0.2O3-delta (BaCe0.8Y0.2O3-delta, BCZY) and binary carbonates [(Li,Na)(2)CO3] (LNCO) was first applied to reduce CO2 accompanied with steam electrolysis in solid oxide electrolysis cell (SOEC) at 600 degrees C, lower than which conventional SOEC composed by YSZ works in (usually above 800 degrees C). Electrolysis performances are improved due to sufficient steam feed at oxygen electrode side (30-110 ml/min). Steam electrolysis provides proton source for the reduction of CO2. Application of composite electrolyte promotes proton transport and directly leads to H-2 even CH4 production. To a certain degree, carbon resistance guarantees the symmetric SOEC operation at a lower bias potential of 0.5 V (vs.00V) applied. A redox-stable and carbon-tolerant LSCM as symmetric electrode with a hybrid-ion-conducting composite electrolyte realizes the fuel synthesis by CO2 reduction in proton-type solid oxide electrolyzer.
  •  
4.
  • Qian, Xukun, et al. (författare)
  • Structure stability of metal-organic framework MIL-53 (Al) in aqueous solutions
  • 2013
  • Ingår i: International journal of hydrogen energy. - : Elsevier BV. - 0360-3199 .- 1879-3487. ; 38:36, s. 16710-16715
  • Tidskriftsartikel (refereegranskat)abstract
    • The structural stability of MIL-53 (Al) in different pH aqueous solutions from room temperature to 100 degrees C has been investigated. Experimental results show MIL-53 (Al) is stable and highly resistant to hydrolysis in neutral and acidic solutions. It can retain its crystallinity and permanent porosity without structural collapse. The good structure stability of MIL-53 (Al) to aqueous solutions is quite unusual among the MOFs. The nitrogen adsorption for the soaked frameworks show a typical type I isotherm. In basic aqueous solution, MIL-53 (Al) undergoes structure transformation.
  •  
5.
  • Wang, Baoyuan, et al. (författare)
  • Fast ionic conduction in semiconductor CeO2-delta electrolyte fuel cells
  • 2019
  • Ingår i: NPG ASIA MATERIALS. - : Nature Publishing Group. - 1884-4049 .- 1884-4057. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Producing electrolytes with high ionic conductivity has been a critical challenge in the progressive development of solid oxide fuel cells (SOFCs) for practical applications. The conventional methodology uses the ion doping method to develop electrolyte materials, e.g., samarium-doped ceria (SDC) and yttrium-stabilized zirconia (YSZ), but challenges remain. In the present work, we introduce a logical design of non-stoichiometric CeO2-delta based on non-doped ceria with a focus on the surface properties of the particles. The CeO2-delta reached an ionic conductivity of 0.1 S/cm and was used as the electrolyte in a fuel cell, resulting in a remarkable power output of 660 mW/cm(2) at 550 degrees C. Scanning transmission electron microscopy (STEM) combined with electron energy-loss spectroscopy (EELS) clearly clarified that a surface buried layer on the order of a few nanometers was composed of Ce3+ on ceria particles to form a CeO2-delta@CeO2 core-shell heterostructure. The oxygen deficient layer on the surface provided ionic transport pathways. Simultaneously, band energy alignment is proposed to address the short circuiting issue. This work provides a simple and feasible methodology beyond common structural (bulk) doping to produce sufficient ionic conductivity. This work also demonstrates a new approach to progress from material fundamentals to an advanced low-temperature SOFC technology.
  •  
6.
  • Wang, Baoyuan, et al. (författare)
  • Preparation and characterization of Sm and Ca co-doped ceria-La0.6Sr0.4Co0.2Fe0.8O3-delta semiconductor-ionic composites for electrolyte-layer-free fuel cells
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 4:40, s. 15426-15436
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of Sm and Ca co-doped ceria, i.e. Ca0.04Ce0.96-xSmxO2-delta (x = 0, 0.09, 0.16, and 0.24) (SCDC), were synthesized by a co-precipitation method. Detailed morphology, composition, crystal structure and electrochemical properties of the prepared materials were characterized. The results revealed that Sm and Ca co-doping could enhance the ionic conductivity in comparison with that of single Ca-doped samples. The composition as Ca0.04Ce0.80Sm0.16O2-delta exhibited a highest ionic conductivity of 0.039 S cm(-1) at 600 degrees C in comparison with the rest of the series, and the optimal ionic conductivity can be interpreted by the coupling effect of oxygen vacancies and mismatch between the dopant ionic radius and critical radius. Composite formation between the semiconductor La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) and the as-prepared SCDC contributed to a remarkable improvement in the ionic conductivity, an unexpectedly high ionic conductivity of 0.188 S cm(-1) was obtained for LSCF-SCDC composites at 600 degrees C, which was four times higher than that of pure SCDC. Using transmission electron microscopy and spectroscopy approaches, we detected an enrichment of oxygen in the LSCF-SCDC interface region and a depletion of oxygen vacancies in LSCF-SCDC and LSCF-LSCF grain boundaries was significantly mitigated, which resulted in the enhancement of ionic conductivity of semiconductor-ionic LSCF-SCDC composites. The electrolyte-layer-free fuel cell (EFFC) fabricated from the LSCF-SCDC semiconductor-ionic membrane demonstrated excellent performances, e.g. 814 mW cm(-2) at 550 degrees C for using the LSCF-Ca0.04Ce0.80Sm0.16O2-delta (SCDC2).
  •  
7.
  • Xia, Changjiu, et al. (författare)
  • Heterogeneous oxidation of cyclohexanone catalyzed by TS-1 : Combined experimental and DFT studies
  • 2015
  • Ingår i: Cuihuà xuébào. - 0253-9837 .- 1872-2067. ; 36:6, s. 845-854
  • Tidskriftsartikel (refereegranskat)abstract
    • The reaction mechanism of the oxidation of cyclohexanone catalyzed by titanium silicate zeolite Received 26 February 21515 TS-1 using aqueous H2O2 as the oxidant was investigated by combining density function theory (DFT) calculations with experimental studies. DFT calculations showed that H2O2 was adsorbed and activated at the tetrahedral Ti sites. By taking into account the adsorption energy, molecular size, steric hindrance and structural information, a reaction mechanism of Baeyer-Villiger oxidation catalyzed by TS-1 that involves the activation of H2O2 was proposed. Experimental studies showed that the major products of cyclohexanone oxidation by H2O2 catalyzed by a hollow TS-1 zeolite were epsilon-carprolactone, 6-hydroxyhexanoic acid, and adipic acid. These products were analyzed by GC-MS and were in good agreement with the proposed mechanism. Our studies showed that the reaction mechanism on TS-1 zeolite was different from that on Sn-beta zeolite.
  •  
8.
  • Zhu, Bin, et al. (författare)
  • Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-delta and ion-doping ceria heterostructure material for new generation fuel cell
  • 2017
  • Ingår i: Nano Energy. - : Elsevier. - 2211-2855 .- 2211-3282. ; 37, s. 195-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Functionalities in heterostructure oxide material interfaces are an emerging subject resulting in extraordinary material properties such as great enhancement in the ionic conductivity in a heterostructure between a semiconductor SrTiO3 and an ionic conductor YSZ (yttrium stabilized zirconia), which can be expected to have a profound effect in oxygen ion conductors and solid oxide fuel cells [1-4]. Hereby we report a semiconductorionic heterostructure La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) and Sm-Ca co-doped ceria (SCDC) material possessing unique properties for new generation fuel cells using semiconductor-ionic heterostructure composite materials. The LSCF-SCDC system contains both ionic and electronic conductivities, above 0.1 S/cm, but used as the electrolyte for the fuel cell it has displayed promising performance in terms of OCV (above 1.0 V) and enhanced power density (ca. 1000 mW/cm(2) at 550 degrees C). Such high electronic conduction in the electrolyte membrane does not cause any short-circuiting problem in the device, instead delivering enhanced power output. Thus, the study of the charge separation/transport and electron blocking mechanism is crucial and can play a vital role in understanding the resulting physical properties and physics of the materials and device. With atomic level resolution ARM 200CF microscope equipped with the electron energy-loss spectroscopy (EELS) analysis, we can characterize more accurately the buried interface between the LSCF and SCDC further reveal the properties and distribution of charge carriers in the heterostructures. This phenomenon constrains the carrier mobility and determines the charge separation and devices' fundamental working mechanism; continued exploration of this frontier can fulfill a next generation fuel cell based on the new concept of semiconductor-ionic fuel cells (SIFCs).
  •  
9.
  • Zhu, Bin, et al. (författare)
  • Fundamental study on biomass-fuelled ceramic fuel cell
  • 2002
  • Ingår i: International Journal of Energy Research. - : Hindawi Limited. - 0363-907X .- 1099-114X. ; 26:1, s. 57-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent development in the advanced intermediate temperature (400 to 700degreesC) ceramic fuel cell (CFC) research brings up feasibility and new opportunity to develop innovative biomass-fuelled CFC technology. This work focuses on fundamentals of the biomass-fuelled CFCs based on available biofuel resources through thermochemical conversion technologies. Both real producer gas from biomass gasification and imitative compounded gas were used as the fuel to operate the CFCs in the biomass CFC testing station. The composition of the fuel gas was varied in a wide range of practices of the present conversion technology both in KTH and Shandong Institute of Technology (SDIT), CFC performances were achieved between 100 and 700 mW cm(-2) at 600-800degreesC corresponding to various gas compositions. A high performance close to 400 mW cm(-2) was obtained at 600degreesC for the gas with the composition of H-2 (50 per cent) + CO (15 per cent) + CO2 (15 per cent) + N-2 (20 per cent) and more than 600 mW cm(-2) for the H-2 (55 per cent) + CO (28 per cent) + CO2 (17 per cent) at 700degreesC. This paper presents the experimental results and discusses the fundamentals and future potentiality on the biomass fuelled CFCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy