SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhu Z) ;mspu:(researchreview)"

Sökning: WFRF:(Zhu Z) > Forskningsöversikt

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S., et al. (författare)
  • Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP
  • 2013
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 532:4, s. 119-244
  • Forskningsöversikt (refereegranskat)abstract
    • Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Abelev, B., et al. (författare)
  • Performance of the ALICE experiment at the CERN LHC
  • 2014
  • Ingår i: International Journal of Modern Physics A. - 0217-751X. ; 29:24
  • Forskningsöversikt (refereegranskat)abstract
    • ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.
  •  
3.
  • Aamodt, K., et al. (författare)
  • The ALICE experiment at the CERN LHC
  • 2008
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Forskningsöversikt (refereegranskat)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
4.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
5.
  • Abazov, V. M., et al. (författare)
  • Evidence for production of single top quarks
  • 2008
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; D:78, s. 012005-
  • Forskningsöversikt (refereegranskat)abstract
    • We present first evidence for the production of single top quarks in the D0 detector at the Fermilab Tevatron p (p) over bar collider. The standard model predicts that the electroweak interaction can produce a top quark together with an antibottom quark or light quark, without the antiparticle top-quark partner that is always produced from strong-coupling processes. Top quarks were first observed in pair production in 1995, and since then, single top-quark production has been searched for in ever larger data sets. In this analysis, we select events from a 0.9 fb(-1) data set that have an electron or muon and missing transverse energy from the decay of a W boson from the top-quark decay, and two, three, or four jets, with one or two of the jets identified as originating from a b hadron decay. The selected events are mostly backgrounds such as W + jets and t (t) over bar events, which we separate from the expected signals using three multivariate analysis techniques: boosted decision trees, Bayesian neural networks, and matrix-element calculations. A binned likelihood fit of the signal cross section plus background to the data from the combination of the results from the three analysis methods gives a cross section for single top-quark production of sigma(p (p) over bar -> tb + X, tqb + X) = 4.7 +/- 1.3 pb. The probability to measure a cross section at this value or higher in the absence of signal is 0.014%, corresponding to a 3.6 standard deviation significance. The measured cross section value is compatible at the 10% level with the standard model prediction for electroweak top-quark production. We use the cross section measurement to directly determine the Cabibbo-Kobayashi-Maskawa quark mixing matrix element that describes the Wtb coupling and find vertical bar V(tb)f(1)(L)vertical bar = 1.31(-0.21)(+0.25), where f(1)(L) is a generic vector coupling. This model-independent measurement translates into 0.68 <= 1 at the 95% C.L. in the standard model.
  •  
6.
  • Aktas, A., et al. (författare)
  • Measurement and QCD analysis of the diffractive deep-inelastic scattering cross section at HERA
  • 2006
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 48:3, s. 715-748
  • Forskningsöversikt (refereegranskat)abstract
    • A detailed analysis is presented of the diffractive deep-inelastic scattering process ep -> eXY, where Y is a proton or a low mass proton excitation carrying a fraction 1 - x(IP) > 0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies |t| < 1 GeV2. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5 <= Q(2) <= 1600 GeV2, triple differentially in x(IP), Q(2) and beta = x/x(P), where x is the Bjorken scaling variable. At low x(IP), the data are consistent with a factorisable x(IP) dependence, which can be described by the exchange of an effective pomeron trajectory with intercept alpha(IP)(0) = 1.118 +/- 0.008(exp.)(-0.010)(+0.029)(model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q(2)and beta dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q(2) range studied. Total and differential cross sections are also measured for the diffractive charged current process e(+) p -> (v) over bar eXY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q(2) at fixed x(P) and x or on x at fixed Q(2) and beta.
  •  
7.
  • Algaba, Juan-Carlos, et al. (författare)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Forskningsöversikt (refereegranskat)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
8.
  • Huang, Y. Z., et al. (författare)
  • Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering
  • 2014
  • Ingår i: Light: Science and Applications. - : Springer Science and Business Media LLC. - 2047-7538 .- 2095-5545. ; 3, s. Art. no. e199-
  • Forskningsöversikt (refereegranskat)abstract
    • Due to its amazing ability to manipulate light at the nanoscale, plasmonics has become one of the most interesting topics in the field of light-matter interaction. As a promising application of plasmonics, surface-enhanced Raman scattering (SERS) has been widely used in scientific investigations and material analysis. The large enhanced Raman signals are mainly caused by the extremely enhanced electromagnetic field that results from localized surface plasmon polaritons. Recently, a novel SERS technology called remote SERS has been reported, combining both localized surface plasmon polaritons and propagating surface plasmon polaritons (PSPPs, or called plasmonic waveguide), which may be found in prominent applications in special circumstances compared to traditional local SERS. In this article, we review the mechanism of remote SERS and its development since it was first reported in 2009. Various remote metal systems based on plasmonic waveguides, such as nanoparticle-nanowire systems, single nanowire systems, crossed nanowire systems and nanowire dimer systems, are introduced, and recent novel applications, such as sensors, plasmon-driven surface-catalyzed reactions and Raman optical activity, are also presented. Furthermore, studies of remote SERS in dielectric and organic systems based on dielectric waveguides remind us that this useful technology has additional, tremendous application prospects that have not been realized in metal systems.
  •  
9.
  • Yu, G., et al. (författare)
  • Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles
  • 2005
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 127:17, s. 6335-6346
  • Forskningsöversikt (refereegranskat)abstract
    • The excellent electroluminescent (EL) properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles, 1-methyl-1,2,3,4,5-pentaphenylsilole (MPPS), and 1,1,2,3,4,5-hexaphenylsilole (HPS) have been found. Despite some studies devoted to these materials, very little is known about the real origin of their unique EL properties. Therefore, we investigated the structures, photoluminescence (PL), and charge carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles as well as the effect of substituents on these characteristics. The single crystals of the three siloles involving 1,1-dimethyl-2,3,4,5-tetraphenylsilole (DMTPS), MPPS, and HIPS were grown and their crystal structures were determined by X-ray diffraction. Three siloles have nonplanar molecular structures. The substituents at 1,1-positions enhance the steric hindrance and have predominant influence on the twisted degree of phenyl groups at ring carbons. This nonplanar structure reduces the intermolecular interaction and the likelihood of excimer formation, and increases PL efficiency in the solid state. The silole films show high fluorescence quantum yields (75-85%), whereas their dilute solutions exhibit a faint emission. The electronic structures of the three siloles were investigated using quantum chemical calculations. The highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) are mainly localized on the silole ring and two phenyl groups at 2,5-positions in all cases, while the LUMOs have a significant orbital density at two exocyclic Si-C bonds. The extremely theoretical studies of luminescent properties were carried out. We calculated the nonradiative decay rate of the first excited state as well as the radiative one. It is found that the faint emission of DMTPS in solutions mainly results from the huge nonradiative decay rate. In solid states, molecular packing can remarkably restrict the intramolecular rotation of the peripheral side phenyl ring, which has a large contribution to the nonradiative transition process. This explains why the 1,1-disubstituted 2,3,4,5-tetraphenylsiloles in the thin films exhibit high fluorescence quantum yields. The charge carrier mobilities of the MPPS and HPS films were measured using a transient EL technique. We obtained a mobility of 2.1 x 10(-6) cm(2)/V(.)s in the MPPS film at an electric field of 1.2 x 10(6) V/cm. This mobility is comparable to that of Alq(3), which is one of the most extensively used electron transport materials in organic light-emitting diodes (LEDs), at the same electric field. The electron mobility of the HPS film is about similar to 1.5 times higher than that of the MPPS film. To the best of our knowledge, this kind of material is one of the most excellent emissive materials that possess both high charge carrier mobility and high PL efficiency in the solid states simultaneously. The excellent EL performances of MPPS and HPS are presumably ascribed to these characteristics.
  •  
10.
  • Amsler, C., et al. (författare)
  • Review of particle physics
  • 2008
  • Ingår i: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693 .- 1873-2445. ; 667:1-5, s. 1-1
  • Forskningsöversikt (refereegranskat)abstract
    • This biennial Review summarizes much of particle physics. Using data from previous editions., plus 2778 new measurements from 645 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors., probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, top quark, muon anomalous magnetic moment, extra dimensions, particle detectors, cosmic background radiation, dark matter, cosmological parameters, and big bang cosmology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy