SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zienolddiny Shanbeh) ;pers:(Lazarus Philip)"

Sökning: WFRF:(Zienolddiny Shanbeh) > Lazarus Philip

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Byun, Jinyoung, et al. (författare)
  • Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer
  • 2022
  • Ingår i: Nature Genetics. - : Nature Research. - 1061-4036 .- 1546-1718. ; 54:8, s. 1167-1177
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity. Fine-mapping and expression quantitative trait locus colocalization nominated several candidate variants and susceptibility genes such as IRF4 and FUBP1. DNA damage assays of prioritized genes in lung fibroblasts indicated that a subset of these genes, including the pleiotropic gene IRF4, potentially exert effects by promoting endogenous DNA damage.
  •  
2.
  • Dai, Juncheng, et al. (författare)
  • Systematic analyses of regulatory variants in DNase I hypersensitive sites identified two novel lung cancer susceptibility loci
  • 2019
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 40:3, s. 432-440
  • Tidskriftsartikel (refereegranskat)abstract
    • DNase I hypersensitive sites (DHS) are abundant in regulatory elements, such as promoter, enhancer and transcription factor binding sites. Many studies have revealed that disease-associated variants were concentrated in DHS-related regions. However, limited studies are available on the roles of DHS-related variants in lung cancer. In this study, we performed a large-scale case-control study with 20 871 lung cancer cases and 15 971 controls to evaluate the associations between regulatory genetic variants in DHS and lung cancer susceptibility. The expression quantitative trait loci (eQTL) analysis and pathway-enrichment analysis were performed to identify the possible target genes and pathways. In addition, we performed motif-based analysis to explore the lung-cancer-related motifs using sequence kernel association test. Two novel variants, rs186332 in 20q13.3 (C>T, odds ratio [OR] = 1.17, 95% confidence interval [95% CI]: 1.10-1.24, P = 8.45 × 10-7) and rs4839323 in 1p13.2 (T>C, OR = 0.92, 95% CI: 0.89-0.95, P = 1.02 × 10-6) showed significant association with lung cancer risk. The eQTL analysis suggested that these two SNPs might regulate the expression of MRGBP and SLC16A1, respectively. What's more, the expression of both MRGBP and SLC16A1 was aberrantly elevated in lung tumor tissues. The motif-based analysis identified 10 motifs related to the risk of lung cancer (P < 1.71 × 10-4). Our findings suggested that variants in DHS might modify lung cancer susceptibility through regulating the expression of surrounding genes. This study provided us a deeper insight into the roles of DHS-related genetic variants for lung cancer.
  •  
3.
  • Ferreiro-Iglesias, Aida, et al. (författare)
  • Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Lung cancer has several genetic associations identified within the major histocompatibility complex (MHC); although the basis for these associations remains elusive. Here, we analyze MHC genetic variation among 26,044 lung cancer patients and 20,836 controls densely genotyped across the MHC, using the Illumina Illumina OncoArray or Illumina 660W SNP microarray. We impute sequence variation in classical HLA genes, fine-map MHC associations for lung cancer risk with major histologies and compare results between ethnicities. Independent and novel associations within HLA genes are identified in Europeans including amino acids in the HLA-B*0801 peptide binding groove and an independent HLA-DQB1*06 loci group. In Asians, associations are driven by two independent HLA allele sets that both increase risk in HLA-DQB1*0401 and HLA-DRB1*0701; the latter better represented by the amino acid Ala-104. These results implicate several HLA-tumor peptide interactions as the major MHC factor modulating lung cancer susceptibility.
  •  
4.
  • Hung, Rayjean J., et al. (författare)
  • Lung Cancer Risk in Never-Smokers of European Descent is Associated With Genetic Variation in the 5(p)15.33 TERT-CLPTM1Ll Region
  • 2019
  • Ingår i: Journal of Thoracic Oncology. - : ELSEVIER SCIENCE INC. - 1556-0864 .- 1556-1380. ; 14:8, s. 1360-1369
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Inherited susceptibility to lung cancer risk in never-smokers is poorly understood. The major reason for this gap in knowledge is that this disease is relatively uncommon (except in Asians), making it difficult to assemble an adequate study sample. In this study we conducted a genome-wide association study on the largest, to date, set of European-descent never-smokers with lung cancer. Methods: We conducted a two-phase (discovery and replication) genome-wide association study in never-smokers of European descent. We further augmented the sample by performing a meta-analysis with never-smokers from the recent OncoArray study, which resulted in a total of 3636 cases and 6295 controls. We also compare our findings with those in smokers with lung cancer. Results: We detected three genome-wide statistically significant single nucleotide polymorphisms rs31490 (odds ratio [OR]: 0.769, 95% confidence interval [CI]: 0.722-0.820; p value 5.31 x 10(-16)), rs380286 (OR: 0.770, 95% CI: 0.723-0.820; p value 4.32 x 10(-16)), and rs4975616 OR: 0.778, 95% CI: 0.730-0.829; p value 1.04 x 10(-14)). All three mapped to Chromosome 5 CLPTM1L-TERT region, previously shown to be associated with lung cancer risk in smokers and in never-smoker Asian women, and risk of other cancers including breast, ovarian, colorectal, and prostate. Conclusions: We found that genetic susceptibility to lung cancer in never-smokers is associated to genetic variants with pan-cancer risk effects. The comparison with smokers shows that top variants previously shown to be associated with lung cancer risk only confer risk in the presence of tobacco exposure, underscoring the importance of gene-environment interactions in the etiology of this disease. (C) 2019 International Association for the Study of Lung Cancer. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
5.
  • Ji, Xuemei, et al. (författare)
  • Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.
  •  
6.
  • Lesseur, Corina, et al. (författare)
  • Genome-wide association meta-analysis identifies pleiotropic risk loci for aerodigestive squamous cell cancers
  • 2021
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Squamous cell carcinomas (SqCC) of the aerodigestive tract have similar etiological risk factors. Although genetic risk variants for individual cancers have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. To identify novel and pleotropic SqCC risk variants, we performed a meta-analysis of GWAS data on lung SqCC (LuSqCC), oro/pharyngeal SqCC (OSqCC), laryngeal SqCC (LaSqCC) and esophageal SqCC (ESqCC) cancers, totaling 13,887 cases and 61,961 controls of European ancestry. We identified one novel genome-wide significant (Pmeta<5x10-8) aerodigestive SqCC susceptibility loci in the 2q33.1 region (rs56321285, TMEM273). Additionally, three previously unknown loci reached suggestive significance (Pmeta<5x10-7): 1q32.1 (rs12133735, near MDM4), 5q31.2 (rs13181561, TMEM173) and 19p13.11 (rs61494113, ABHD8). Multiple previously identified loci for aerodigestive SqCC also showed evidence of pleiotropy in at least another SqCC site, these include: 4q23 (ADH1B), 6p21.33 (STK19), 6p21.32 (HLA-DQB1), 9p21.33 (CDKN2B-AS1) and 13q13.1(BRCA2). Gene-based association and gene set enrichment identified a set of 48 SqCC-related genes to DNA damage and epigenetic regulation pathways. Our study highlights the importance of cross-cancer analyses to identify pleiotropic risk loci of histology-related cancers arising at distinct anatomical sites.
  •  
7.
  • Li, Yafang, et al. (författare)
  • Genetic interaction analysis among oncogenesis-related genes revealed novel genes and networks in lung cancer development
  • 2019
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 10:19, s. 1760-1774
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of cancer is driven by the accumulation of many oncogenesis-related genetic alterations and tumorigenesis is triggered by complex networks of involved genes rather than independent actions. To explore the epistasis existing among oncogenesis-related genes in lung cancer development, we conducted pairwise genetic interaction analyses among 35,031 SNPs from 2027 oncogenesis-related genes. The genotypes from three independent genome-wide association studies including a total of 24,037 lung cancer patients and 20,401 healthy controls with Caucasian ancestry were analyzed in the study. Using a two-stage study design including discovery and replication studies, and stringent Bonferroni correction for multiple statistical analysis, we identified significant genetic interactions between SNPs in RGL1:RAD51B (OR=0.44, p value=3.27x10-11 in overall lung cancer and OR=0.41, p value=9.71x10-11 in non-small cell lung cancer), SYNE1:RNF43 (OR=0.73, p value=1.01x10-12 in adenocarcinoma) and FHIT:TSPAN8 (OR=1.82, p value=7.62x10-11 in squamous cell carcinoma) in our analysis. None of these genes have been identified from previous main effect association studies in lung cancer. Further eQTL gene expression analysis in lung tissues provided information supporting the functional role of the identified epistasis in lung tumorigenesis. Gene set enrichment analysis revealed potential pathways and gene networks underlying molecular mechanisms in overall lung cancer as well as histology subtypes development. Our results provide evidence that genetic interactions between oncogenesis-related genes play an important role in lung tumorigenesis and epistasis analysis, combined with functional annotation, provides a valuable tool for uncovering functional novel susceptibility genes that contribute to lung cancer development by interacting with other modifier genes.
  •  
8.
  • Li, Yafang, et al. (författare)
  • Genome-wide interaction study of smoking behavior and non-small cell lung cancer risk in Caucasian population
  • 2018
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 39:3, s. 336-346
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-small cell lung cancer is the most common type of lung cancer. Both environmental and genetic risk factors contribute to lung carcinogenesis. We conducted a genome-wide interaction analysis between single nucleotide polymorphisms (SNPs) and smoking status (never- versus ever-smokers) in a European-descent population. We adopted a two-step analysis strategy in the discovery stage: we first conducted a case-only interaction analysis to assess the relationship between SNPs and smoking behavior using 13 336 non-small cell lung cancer cases. Candidate SNPs with P-value <0.001 were further analyzed using a standard case-control interaction analysis including 13 970 controls. The significant SNPs with P-value <3.5 × 10-5 (correcting for multiple tests) from the case-control analysis in the discovery stage were further validated using an independent replication dataset comprising 5377 controls and 3054 non-small cell lung cancer cases. We further stratified the analysis by histological subtypes. Two novel SNPs, rs6441286 and rs17723637, were identified for overall lung cancer risk. The interaction odds ratio and meta-analysis P-value for these two SNPs were 1.24 with 6.96 × 10-7 and 1.37 with 3.49 × 10-7, respectively. In addition, interaction of smoking with rs4751674 was identified in squamous cell lung carcinoma with an odds ratio of 0.58 and P-value of 8.12 × 10-7. This study is by far the largest genome-wide SNP-smoking interaction analysis reported for lung cancer. The three identified novel SNPs provide potential candidate biomarkers for lung cancer risk screening and intervention. The results from our study reinforce that gene-smoking interactions play important roles in the etiology of lung cancer and account for part of the missing heritability of this disease.
  •  
9.
  • Li, Yafang, et al. (författare)
  • Lung cancer in ever- and never-smokers : findings from multi-population GWAS studies
  • 2024
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association For Cancer Research (AACR). - 1055-9965 .- 1538-7755. ; 33:3, s. 389-399
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Clinical, molecular, and genetic epidemiology studies displayed remarkable differences between ever- and never-smoking lung cancer.METHODS: We conducted a stratified multi-population (European, East Asian, and African descent) association study on 44,823 ever-smokers and 20,074 never-smokers to identify novel variants that were missed in the non-stratified analysis. Functional analysis including expression quantitative trait loci (eQTL) colocalization and DNA damage assays, and annotation studies were conducted to evaluate the functional roles of the variants. We further evaluated the impact of smoking quantity on lung cancer risk for the variants associated with ever-smoking lung cancer.RESULTS: Five novel independent loci, GABRA4, intergenic region 12q24.33, LRRC4C, LINC01088, and LCNL1 were identified with the association at two or three populations (P < 5 × 10-8). Further functional analysis provided multiple lines of evidence suggesting the variants affect lung cancer risk through excessive DNA damage (GABRA4) or cis-regulation of gene expression (LCNL1). The risk of variants from 12 independent regions, including the well-known CHRNA5, associated with ever-smoking lung cancer was evaluated for never-smokers, light-smokers (packyear ≤ 20), and moderate-to-heavy-smokers (packyear > 20). Different risk patterns were observed for the variants among the different groups by smoking behavior.CONCLUSIONS: We identified novel variants associated with lung cancer in only ever- or never-smoking groups that were missed by prior main-effect association studies. IMPACT: Our study highlights the genetic heterogeneity between ever- and never-smoking lung cancer and provides etiologic insights into the complicated genetic architecture of this deadly cancer.
  •  
10.
  • Luyapan, Jennifer, et al. (författare)
  • Candidate pathway analysis of surfactant proteins identifies CTSH and SFTA2 that influences lung cancer risk
  • 2023
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 32:18, s. 2842-2855
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary surfactant is a lipoprotein synthesized and secreted by alveolar type II cells in lung. We evaluated the associations between 200,139 single nucleotide polymorphisms (SNPs) of 40 surfactant-related genes and lung cancer risk using genotyped data from two independent lung cancer genome-wide association studies. Discovery data included 18,082 cases and 13,780 controls of European ancestry. Replication data included 1,914 cases and 3,065 controls of European descent. Using multivariate logistic regression, we found novel SNPs in surfactant-related genes CTSH [rs34577742 C > T, odds ratio (OR) = 0.90, 95% confidence interval (CI) = 0.89-0.93, P = 7.64 × 10-9] and SFTA2 (rs3095153 G > A, OR = 1.16, 95% CI = 1.10-1.21, P = 1.27 × 10-9) associated with overall lung cancer in the discovery data and validated in an independent replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.80-0.96, P = 5.76 × 10-3) and SFTA2 (rs3095153 G > A, OR = 1.14, 95% CI = 1.01-1.28, P = 3.25 × 10-2). Among ever smokers, we found SNPs in CTSH (rs34577742 C > T, OR = 0.89, 95% CI = 0.85-0.92, P = 1.94 × 10-7) and SFTA2 (rs3095152 G > A, OR = 1.20, 95% CI = 1.14-1.27, P = 4.25 × 10-11) associated with overall lung cancer in the discovery data and validated in the replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.79-0.97, P = 1.64 × 10-2) and SFTA2 (rs3095152 G > A, OR = 1.15, 95% CI = 1.01-1.30, P = 3.81 × 10-2). Subsequent transcriptome-wide association study using expression weights from a lung expression quantitative trait loci study revealed genes most strongly associated with lung cancer are CTSH (PTWAS = 2.44 × 10-4) and SFTA2 (PTWAS = 2.32 × 10-6).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy