SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zimprich Alexander) "

Sökning: WFRF:(Zimprich Alexander)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Reinthaler, Eva M., et al. (författare)
  • TPP2 mutation associated with sterile brain inflammation mimicking MS
  • 2018
  • Ingår i: NEUROLOGY-GENETICS. - 2376-7839. ; 4:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To ascertain the genetic cause of a consanguineous family from Syria suffering from a sterile brain inflammation mimicking a mild nonprogressive form of MS.Methods We used homozygosity mapping and next-generation sequencing to detect the disease-causing gene in the affected siblings. In addition, we performed RNA and protein expression studies, enzymatic activity assays, immunohistochemistry, and targeted sequencing of further MS cases from Austria, Germany, Canada and Jordan.Results In this study, we describe the identification of a homozygous missense mutation (c.82T>G, p.Cys28Gly) in the tripeptidyl peptidase II (TPP2) gene in all 3 affected siblings of the family. Sequencing of all TPP2-coding exons in 826 MS cases identified one further homozygous missense variant (c.2027C>T, p.Thr676Ile) in a Jordanian MS patient. TPP2 protein expression in whole blood was reduced in the affected siblings. In contrast, TPP2 protein expression in postmortem brain tissue from MS patients without TPP2 mutations was highly upregulated.Conclusions The homozygous TPP2 mutation (p.Cys28Gly) is likely responsible for the inflammation phenotype in this family. TPP2 is an ubiquitously expressed serine peptidase that removes tripeptides from the N-terminal end of longer peptides. TPP2 is involved in various biological processes including the destruction of major histocompatibility complex Class I epitopes. Recessive loss-of-function mutations in TPP2 were described in patients with Evans syndrome, a rare autoimmune disease affecting the hematopoietic system. Based on the gene expression results in our MS autopsy brain samples, we further suggest that TPP2 may play a broader role in the inflammatory process in MS.
  •  
2.
  • Votinov, Mikhail, et al. (författare)
  • A Genetic Polymorphism of the Endogenous Opioid Dynorphin Modulates Monetary Reward Anticipation in the Corticostriatal Loop
  • 2014
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynorphin/κ-opioid receptor (KOP-R) system has been shown to play a role in different types of behavior regulation, including reward-related behavior and drug craving. It has been shown that alleles with 3 or 4 repeats (HH genotype) of the variable nucleotide tandem repeat (68-bp VNTR) functional polymorphism of the prodynorphin (PDYN) gene are associated with higher levels of dynorphin peptides than alleles with 1 or 2 repeats (LL genotype). We used fMRI on N = 71 prescreened healthy participants to investigate the effect of this polymorphism on cerebral activation in the limbic-corticostriatal loop during reward anticipation. Individuals with the HH genotype showed higher activation than those with the LL genotype in the medial orbitofrontal cortex (mOFC) when anticipating a possible monetary reward. In addition, the HH genotype showed stronger functional coupling (as assessed by effective connectivity analyses) of mOFC with VMPFC, subgenual anterior cingulate cortex, and ventral striatum during reward anticipation. This hints at a larger sensitivity for upcoming rewards in individuals with the HH genotype, resulting in a higher motivation to attain these rewards. These findings provide first evidence in humans that the PDYN polymorphism modulates neural processes associated with the anticipation of rewards, which ultimately may help to explain differences between genotypes with respect to addiction and drug abuse.
  •  
3.
  • Buervenich, Silvia, et al. (författare)
  • A rare truncating mutation in ADH1C (G78Stop) shows significant association with Parkinson disease in a large international sample.
  • 2005
  • Ingår i: Archives of neurology. - : American Medical Association (AMA). - 0003-9942. ; 62:1, s. 74-8
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Alcohol dehydrogenases (ADHs) may be involved in the pathogenesis of neurodegenerative disorders because of their multiple roles in detoxification pathways and retinoic acid synthesis. In a previous study, significant association of an ADH class IV allele with Parkinson disease (PD) was found in a Swedish sample. PATIENTS: The previously associated single-nucleotide polymorphism plus 12 further polymorphisms in the ADH cluster on human chromosome 4q23 were screened for association in an extension of the original sample that now included 123 Swedish PD patients and 127 geographically matched control subjects. A rare nonsense single-nucleotide polymorphism in ADH1C (G78stop, rs283413) was identified in 3 of these patients but in no controls. To obtain sufficient power to detect a possible association of this rare variant with disease, we screened a large international sample of 1076 PD patients of European ancestry and 940 matched controls. RESULTS: The previously identified association with an ADH class IV allele remained significant (P<.02) in the extended Swedish study. Furthermore, in the international collaboration, the G78stop mutation in ADH1C was found in 22 (2.0%) of the PD patients but only in 6 controls (0.6%). This association was statistically significant (chi(2)(1) = 7.5; 2-sided P = .007; odds ratio, 3.25 [95% confidence interval, 1.31-8.05]). In addition, the G78stop mutation was identified in 4 (10.0%) of 40 Caucasian index cases with PD with mainly hereditary forms of the disorder. CONCLUSION: Findings presented herein provide further evidence for mutations in genes encoding ADHs as genetic risk factors for PD.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy