SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zody Michael C) ;pers:(Nusbaum Chad)"

Sökning: WFRF:(Zody Michael C) > Nusbaum Chad

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haas, Brian J., et al. (författare)
  • Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 461:7262, s. 393-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement(1). To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population(1). Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion(2). Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars(3,4). Here we report the sequence of the P. infestans genome, which at similar to 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for similar to 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
  •  
2.
  •  
3.
  • Garber, Manuel, et al. (författare)
  • Closing gaps in the human genome using sequencing by synthesis
  • 2009
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906. ; 10:6, s. R60-
  • Tidskriftsartikel (refereegranskat)abstract
    • The most recent release of the finished human genome contains 260 euchromatic gaps (excluding chromosome Y). Recent work has helped explain a large number of these unresolved regions as 'structural' in nature. Another class of gaps is likely to be refractory to clone-based approaches, and cannot be approached in ways previously described. We present an approach for closing these gaps using 454 sequencing. As a proof of principle, we closed all three remaining non-structural gaps in chromosome 15.
  •  
4.
  • Kirby, Andrew, et al. (författare)
  • Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:3, s. 299-303
  • Tidskriftsartikel (refereegranskat)abstract
    • Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (similar to 1.5-5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.
  •  
5.
  • Zody, Michael C., 1968- (författare)
  • Investigation of Mechanics of Mutation and Selection by Comparative Sequencing
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The process of evolution is of both scientific and medical interest. This thesis presents several studies using complete genomic reference sequences, comparative genomic data, and intraspecific diversity data to study the two key processes of evolution: mutation and selection. Large duplications, deletions, inversions, and translocations of DNA contribute to genomic variation both between and within species. Human chromosomes 15 and 17 contain a high percentage of dispersed, recently duplicated sequences. Examination of the relationships between these sequences showed that the majority of all duplications within each chromosome could be linked through core sequences that are prone to duplication. Comparison to orthologous sequences in other mammals allowed a reconstruction of the ancestral state of the human chromosomes, revealing that regions of rearrangement specific to the human lineage are highly enriched in chromosome-specific duplications. Comparison to copy number variation data from other studies also shows that these regions are enriched in current human structural variation. One specific region, the MAPT locus at 17q21.31, known to contain an inversion polymorphism in Europeans, was resequenced completely across both human orientation haplotypes and in chimpanzee and orangutan, revealing complex duplication structures at the inversion breakpoints, with the human region being more complex than chimpanzee or orangutan. Fluorescent in-situ hybridization analysis of human, chimpanzee, and orangutan chromosomes showed inversion polymorphisms of independent origin in all three species, demonstrating that this region has been a hotspot of genomic rearrangement for at least twelve million years. These results reveal a mechanistic relationship between sequence duplication and rearrangement in the great apes. We also generated a draft sequence of the chimpanzee genome and compared it to that of the human. Among other findings, this showed that CpG dinucleotides contribute 25% of all single base mutations, with a rate of mutation ~10-fold that of other bases, and that the male mutation rate in great apes is ~5-6 times the female rate, a higher ratio than had been observed in comparisons of primates and rodents. We detected six regions of probable recent positive selection in humans with a statistical method relying on chimpanzee sequence to control for regional variation in mutation rates. Finally, resequencing of several lines of domestic chicken and comparison to the reference chicken genome identified a number of gene deletions fixed in domestic lines and also several potential selective sweeps. Of particular interest are a missense mutation in TSHR nearly fixed in all domestic chickens and a partial deletion of SH3RF2 fixed in a high growth line. The TSHR mutation may play a role in relaxation of seasonal reproduction. A high-resolution QTL mapping experiment showed that the SH3RF2 deletion is significantly associated with increased growth. This work provides important new insights into the mechanics of evolutionary change at both the single nucleotide and structural level and identifies potential targets of natural and artificial selection in humans and chickens.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy