SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zorzano María Paz) ;pers:(Escamilla Roa Elizabeth)"

Sökning: WFRF:(Zorzano María Paz) > Escamilla Roa Elizabeth

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Escamilla-Roa, Elizabeth, et al. (författare)
  • DFT study of electronic and redox properties of TiO2 supported on olivine for modelling regolith on Moon and Mars conditions
  • 2020
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 180
  • Tidskriftsartikel (refereegranskat)abstract
    • Titanium dioxide TiO2 is one of the most studied oxides in photocatalysis, due to its electronic structure and its wide variety of applications, such as gas sensors and biomaterials, and especially in methane-reforming catalysis. Titanium dioxide and olivine have been detected both on Mars and our Moon. It has been postulated that on Mars photocatalytic processes may be relevant for atmospheric methane fluctuation, radicals and perchlorate productions etc. However, to date no investigation has been devoted to modelling the properties of TiO2 adsorbed on olivine surface.The goal of this study is to investigate at atomic level with electronic structure calculations based on the Density Functional Theory (DFT), the atomic interactions that take place during the adsorption processes for formation of a TiO regolith. This model is formed with different TiO films adsorbed on olivine (forsterite) surfaces, one of the most common minerals in Universe, Earth, Mars, cometary and interstellar dust. We propose three regolith models to simulate the principal phase of titanium oxide (TiO, Ti2O3 and TiO2). The models show different adsorption processes i.e. physisorption and chemisorption. Our results suggest that the TiO is the most reactive phase and produces a strong exothermic effect. Besides, we have detailed, from a theoretical point of view, the effect that has the adsorption process in the electronic properties such as electronic density of state (DOS) and oxide reduction process (redox). This theoretical study can be important to understand the formation of new materials (supports) that can be used as support in the catalytic processes that occur in the Earth, Mars and Moon. Also, it may be important to interpret the present day photochemistry and interaction of regolith and airborne aerosols in the atmosphere on Mars or to define possible catalytic reactions of the volatiles captured on the Moon regolith.
  •  
2.
  • Escamilla-Roa, Elizabeth, et al. (författare)
  • DFT study of the reduction reaction of calcium perchlorate on olivine surface : Implications to formation of Martian’s regolith
  • 2020
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 512
  • Tidskriftsartikel (refereegranskat)abstract
    • Perchlorates have been found widespread on the surface of Mars, their origin and degradation pathways are not understood to date yet. We investigate here, from a theoretical point of view, the potential redox processes that take place in the interaction of Martian minerals such as olivine, with anhydrous and hydrated perchlorates. For this theoretical study, we take as mineral substrate the (1 0 0) surface of forsterite and calcium perchlorate salt as adsorbate. Our DFT calculations suggests a reduction pathway to chlorate and chlorite. When the perchlorate has more than 4 water molecules, this mechanism, which does not require high-temperature or high energy sources, results in parallel with the oxidation of the mineral surface, forming magnesium peroxide, MgO2, and in the formation of ClO3, which through photolysis is known to form ClO-O2. Because of the high UV irradiance that reaches the surface of Mars, this may be a source of O2 on Mars. Our results suggest that this process may be a natural removal pathway for perchlorates from the Martian regolith, which in the presence of atmospheric water for salt hydration, can furthermore lead to the production of oxygen. This mechanism may thus have implications on the present and future habitability of the Martian surface.
  •  
3.
  • Escamilla-Roa, Elizabeth, et al. (författare)
  • Self-Assembled Structures Formed in CO2-Enriched Atmospheres: A Case-Study for Martian Biomimetic Forms
  • 2022
  • Ingår i: Astrobiology. - : Mary Ann Liebert. - 1531-1074 .- 1557-8070. ; 22:7, s. 863-879
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to investigate the biomimetic precipitation processes that follow the chemical-garden reaction of brines of CaCl2 and sulfate salts with silicate in alkaline conditions under a Mars-type CO2-rich atmosphere. We characterize the precipitates with Environmental Scanning Electron Microscope micrography, micro-Raman spectroscopy, and X-ray diffractometry. Our analysis results indicate that self-assembled carbonate structures formed with calcium chloride can have vesicular and filamentary features. With magnesium sulfate as a reactant a tentative assignment with Raman spectroscopy indicates the presence of natroxalate in the precipitate. These morphologies and compounds appear through rapid sequestration of atmospheric CO2 by alkaline solutions of silica and salts.
  •  
4.
  • Galvez-Martinez, Santos, et al. (författare)
  • Ar+ ion bombardment dictates glycine adsorption on pyrite (100) surface : X-ray photoemission spectroscopy and DFT approach
  • 2020
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 530
  • Tidskriftsartikel (refereegranskat)abstract
    • Ar+ ion sputtering on pyrite surfaces leads to the generation of sulfur vacancies and metallic iron. Our research shows that sputtering and annealing processes drive electrostatic changes on the pyrite surface, which play an important role in the molecular adsorption of glycine. While both chemical species (anion and zwitterion) adsorb on a sputtered pyrite surface, the anionic form of glycine is favoured. Nevertheless, in both treatments (sputtered or annealed surfaces), molecules evolve from zwitterionic to anionic species over time. Quantum mechanical calculations based in Density Functional Theory (DFT) suggest the energy required to generate vacancies increases with the number of vacancies produced, and the atomic charge of the Fe atoms that is next to a vacancy increases linearly with the number of vacancies. This leads to enhanced redox processes on the sputtered pyrite surface that favour the adsorption of glycine, which is confirmed experimentally by X-ray Photoemission Spectroscopy (XPS). We have investigated theoretically the efficiency of the adsorption process of the zwitterionic glycine onto vacancies sites: this reaction is exothermic, i.e. is energetically favoured and its energy increases with the number of defects, confirming the increased reactivity observed experimentally. The experiments show a treatment-dependent molecular selectivity of the pyrite surface.
  •  
5.
  • Galvez-Martinez, Santos, et al. (författare)
  • Defects on a pyrite(100) surface produce chemical evolution of glycine under inert conditions : experimental and theoretical approaches
  • 2019
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 21:44, s. 24535-24542
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of non-stoichiometric sites on the pyrite(100) surface makes it a suitable substrate for driving the chemical evolution of the amino acid glycine over time, even under inert conditions. Spectroscopic molecular fingerprints prove a transition process from a zwitterionic species to an anionic species over time on the monosulfide enriched surface. By combining experimental and theoretical approaches, we propose a surface mechanism where the interaction between the amino acid species and the surface will be driven by the quenching of the surface states at Fe sites and favoured by sulfur vacancies. This study demonstrates the potential capability of pyrite to act as a surface catalyst.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy