SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zorzano Mier Maria Paz) "

Sökning: WFRF:(Zorzano Mier Maria Paz)

  • Resultat 1-10 av 59
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Azua-Bustos, Armando, et al. (författare)
  • Aeolian transport of viable microbial life across the Atacama Desert, Chile : Implications for Mars
  • 2019
  • Ingår i: Scientific Reports. - : Springer. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we inspect whether microbial life may disperse using dust transported by wind in the Atacama Desert in northern Chile, a well-known Mars analog model. By setting a simple experiment across the hyperarid core of the Atacama we found that a number of viable bacteria and fungi are in fact able to traverse the driest and most UV irradiated desert on Earth unscathed using wind-transported dust, particularly in the later afternoon hours. This finding suggests that microbial life on Mars, extant or past, may have similarly benefited from aeolian transport to move across the planet and find suitable habitats to thrive and evolve.
  •  
4.
  •  
5.
  • Bhardwaj, Anshuman, et al. (författare)
  • Are Slope Streaks Indicative of Global‐Scale Aqueous Processes on Contemporary Mars?
  • 2019
  • Ingår i: Reviews of geophysics. - : American Geophysical Union (AGU). - 8755-1209 .- 1944-9208. ; 57:1, s. 48-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Slope streaks are prevalent and intriguing dark albedo surface features on contemporary Mars. Slope streaks are readily observed in the equatorial and subequatorial dusty regolith regions with low thermal inertia. They gradually fade over decadal timescales. The proposed mechanisms for their formation vary widely based on several physicochemical and geomorphological explanations. The scientific community is divided in proposing both dry and wet mechanisms for the formation of slope streaks. Here we perform a systematic evaluation of the literature for these wet and dry mechanisms. We discuss the probable constraints on the various proposed mechanisms and provide perspectives on the plausible process driving global‐scale slope streak formation on contemporary Mars. Although per our understanding, a thorough consideration of the global distribution of slope streaks, their morphology and topography, flow characteristics, physicochemical and atmospheric coincidences, and terrestrial analogies weighs more in favor of several wet mechanisms, we acknowledge that such wet mechanisms cannot explain all the reported morphological and terrain variations of slope streaks. Thus, we suggest that explanations considering both dry and wet processes can more holistically describe all the observed morphological variations among slope streaks. We further acknowledge the constraints on the resolutions of remote sensing data and on our understanding of the Martian mineralogy, climate, and atmosphere and recommend continuous investigations in this direction using future remote sensing acquisitions and simulations. In this regard, finding more wet and dry terrestrial analogs for Martian slope streaks and studying them at high spatiotemporal resolutions can greatly improve our understanding.
  •  
6.
  • Bhardwaj, Anshuman, et al. (författare)
  • Discovery of recurring slope lineae candidates in Mawrth Vallis, Mars
  • 2019
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Several interpretations of recurring slope lineae (RSL) have related RSL to the potential presence of transient liquid water on Mars. Such probable signs of liquid water have implications for Mars exploration in terms of rover safety, planetary protection during rover operations, and the current habitability of the planet. Mawrth Vallis has always been a prime target to be considered for Mars rover missions due to its rich mineralogy. Most recently, Mawrth Vallis was one of the two final candidates selected by the European Space Agency as a landing site for the ExoMars 2020 mission. Therefore, all surface features and landforms in Mawrth Vallis that may be of special interest in terms of scientific goals, rover safety, and operations must be scrutinised to better assess it for future Mars missions. Here, we report on the initial detection of RSL candidates in two craters of Mawrth Vallis. The new sightings were made outside of established RSL regions and further prompt the inclusion of a new geographical region within the RSL candidate group. Our inferences on the RSL candidates are based on several morphological and geophysical evidences and analogies: (i) the dimensions of the RSL candidates are consistent with confirmed mid-latitude RSL; (ii) albedo and thermal inertia values are comparable to those of other mid-latitude RSL sites; and (iii) features are found in a summer season image and on the steep and warmest slopes. These results denote the plausible presence of transient liquid brines close to the previously proposed landing ellipse of the ExoMars rover, rendering this site particularly relevant to the search of life. Further investigations of Mawrth Vallis carried out at higher spatial and temporal resolutions are needed to identify more of such features at local scales to maximize the scientific return from the future Mars rovers, to prevent probable biological contamination during rover operations, to evade damage to rover components as brines can be highly corrosive, and to quantify the ability of the regolith at mid-latitudes to capture atmospheric water which is relevant for in-situ-resource utilization.
  •  
7.
  • Bhardwaj, Anshuman, et al. (författare)
  • Distribution and Morphologies of Transverse Aeolian Ridges in ExoMars 2020 Rover Landing Site
  • 2019
  • Ingår i: Remote Sensing. - : MDPI. - 2072-4292. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Aeolian processes are believed to play a major role in the landscape evolution of Mars. Investigations on Martian aeolian landforms such as ripples, transverse aeolian ridges (TARs), and dunes, and aeolian sediment flux measurements are important to enhance our understanding of past and present wind regimes, the ongoing dust cycle, landscape evolution, and geochemistry. These aeolian bedforms are often comprised of loose sand and sharply undulating topography and thus pose a threat to mobility and maneuvers of Mars rovers. Here we present a first-hand account of the distribution, morphologies, and morphometrics of TARs in Oxia Planum, the recently selected ExoMars 2020 Rover landing site. The gridded mapping was performed for contiguous stretches of TARs within all the landing ellipses using 57 sub-meter high resolution imaging science experiment (HiRISE) scenes. We also provide the morphological descriptions for all types of TARs present within the landing ellipses. We use HiRISE digital terrain models (DTMs) along with the images to derive morphometric information for TARs in Oxia Planum. In general, the average areal TAR coverage was found to be 5.4% (±4.9% standard deviation), increasing from west to east within the landing ellipses. We report the average TAR morphometrics in the form of crest–ridge width (131.1 ± 106.2 m), down-wind TAR length (17.6 ± 10.1 m), wavelength (37.3 ± 11.6 m), plan view aspect ratio (7.1 ± 2.3), inter-bedform spacing (2.1 ± 1.1), slope (10.6° ± 6.1°), predominant orientations (NE-SW and E-W), and height (1.2 ± 0.8 m). While simple TARs are predominant, we report other TAR morphologies such as forked TAR, wavy TAR with associated smaller secondary ripples, barchan-like TAR, networked TAR, and mini-TARs from the region. Our results can help in planning the rover traverses in terms of both safe passage and scientific returns favoring aeolian research, particularly improving our understanding of TARs.
  •  
8.
  • Bhardwaj, Anshuman, et al. (författare)
  • Martian slope streaks as plausible indicators of transient water activity
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Slope streaks have been frequently observed in the equatorial, low thermal inertia and dusty regions of Mars. The reason behind their formation remains unclear with proposed hypotheses for both dry and wet mechanisms. Here, we report an up-to-date distribution and morphometric investigation of Martian slope streaks. We find: (i) a remarkable coexistence of the slope streak distribution with the regions on Mars with high abundances of water-equivalent hydrogen, chlorine, and iron; (ii) favourable thermodynamic conditions for transient deliquescence and brine development in the slope streak regions; (iii) a significant concurrence of slope streak distribution with the regions of enhanced atmospheric water vapour concentration, thus suggestive of a present-day regolith-atmosphere water cycle; and (iv) terrain preferences and flow patterns supporting a wet mechanism for slope streaks. These results suggest a strong local regolith-atmosphere water coupling in the slope streak regions that leads to the formation of these fluidised features. Our conclusions can have profound astrobiological, habitability, environmental, and planetary protection implications
  •  
9.
  • Bhardwaj, Anshuman, et al. (författare)
  • UAV Imaging of a Martian Brine Analogue Environment in a Fluvio-Aeolian Setting
  • 2019
  • Ingår i: Remote Sensing. - : MDPI. - 2072-4292. ; 11:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding extraterrestrial environments and landforms through remote sensing and terrestrial analogy has gained momentum in recent years due to advances in remote sensing platforms, sensors, and computing efficiency. The seasonal brines of the largest salt plateau on Earth in Salar de Uyuni (Bolivian Altiplano) have been inadequately studied for their localized hydrodynamics and the regolith volume transport across the freshwater-brine mixing zones. These brines have recently been projected as a new analogue site for the proposed Martian brines, such as recurring slope lineae (RSL) and slope streaks. The Martian brines have been postulated to be the result of ongoing deliquescence-based salt-hydrology processes on contemporary Mars, similar to the studied Salar de Uyuni brines. As part of a field-site campaign during the cold and dry season in the latter half of August 2017, we deployed an unmanned aerial vehicle (UAV) at two sites of the Salar de Uyuni to perform detailed terrain mapping and geomorphometry. We generated high-resolution (2 cm/pixel) photogrammetric digital elevation models (DEMs) for observing and quantifying short-term terrain changes within the brines and their surroundings. The achieved co-registration for the temporal DEMs was considerably high, from which precise inferences regarding the terrain dynamics were derived. The observed average rate of bottom surface elevation change for brines was ~1.02 mm/day, with localized signs of erosion and deposition. Additionally, we observed short-term changes in the adjacent geomorphology and salt cracks. We conclude that the transferred regolith volume via such brines can be extremely low, well within the resolution limits of the remote sensors that are currently orbiting Mars, thereby making it difficult to resolve the topographic relief and terrain perturbations that are produced by such flows on Mars. Thus, the absence of observable erosion and deposition features within or around most of the proposed Martian RSL and slope streaks cannot be used to dismiss the possibility of fluidized flow within these features
  •  
10.
  • Castro, Juan Francisco Buenestado, et al. (författare)
  • Liquid water at crater Gale, Mars
  • 2015
  • Ingår i: Journal of Astrobiology and Outreach. - : OMICS Publishing Group. - 2332-2519. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Suspicion that Mars could have transient liquid water on its surface through deliquescence of salts to form aqueous solutions or brines is an old proposal whose inquiry was boosted by Phoenix Lander observations. It provided some images of what were claimed to be brines, the presence of which at its landing site was compatible with the atmospheric parameters and the composition of the soil observed. On the other hand, the so called Recurrent Slope Lineae (RSL) often imaged by orbiters, were considered as another clue pointing to the occurrence of the phenomenon, since it was thought that they might be caused by it. Now, Curiosity rover has performed the first in-situ multi-instrumental study on Mars’ surface, having collected the most comprehensive environmental data set ever taken by means of their instruments Rover Environmental Monitoring Station (REMS), Dynamic Albedo of Neutrons (DAN), and Sample Analysis at Mars (SAM). REMS is providing continuous and accurate measurements of the relative humidity and surface and air temperatures among other parameters, and DAN and SAM provide the water content of the regolith and the atmosphere respectively. Analysis of these data has allowed to establish the existence of a present day active water cycle between the atmosphere and the regolith, that changes according to daily and seasonal cycles, and that is mediated by the presence of brines during certain periods of each and every day. Importantly, the study shows that the conditions for the occurrence of deliquescence are favourable even at equatorial latitudes where, at first, it was thought they were not due to the temperature and relative humidity conditions. This study provides new keys for the understanding of martian environment, and opens interesting lines of research and studies for future missions which may even have a bearing on extant microbial life.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 59
Typ av publikation
tidskriftsartikel (42)
konferensbidrag (11)
doktorsavhandling (4)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (44)
övrigt vetenskapligt/konstnärligt (14)
populärvet., debatt m.m. (1)
Författare/redaktör
Zorzano Mier, María- ... (53)
Martin-Torres, Javie ... (50)
Bhardwaj, Anshuman (12)
Sam, Lydia (7)
Soria-Salinas, Álvar ... (7)
Vakkada Ramachandran ... (7)
visa fler...
Mathanlal, Thasshwin (6)
Fonseca, Ricardo (5)
Mier, Maria-Paz Zorz ... (5)
Smith, M. D. (4)
Singh, Shaktiman (3)
Escamilla-Roa, Eliza ... (3)
Mangold, N. (3)
Smith, C. L. (3)
Cousin, A. (3)
Cockell, Charles S. (3)
Rapin, W. (3)
Conrad, Pamela G. (3)
Fabre, C. (2)
Johnson, J (2)
Forni, O. (2)
Shekhar, Mayank (2)
Anderson, R (2)
Gasnault, O. (2)
McLennan, S. M. (2)
González-Silva, Carl ... (2)
Fairén, Alberto G. (2)
Ammannito, E. (2)
Raulin, F. (2)
Rettberg, P. (2)
Westall, F. (2)
Berger, G (2)
Ramírez Luque, Juan ... (2)
Clark, B (2)
Le Mouélic, S. (2)
Maurice, S. (2)
Newman, C.E. (2)
Wiens, R.C. (2)
Stevens, Adam (2)
Meslin, P.Y. (2)
Ollila, A. (2)
Lasue, J. (2)
Sautter, V. (2)
Newsom, H. (2)
Blaney, D. (2)
Lanza, N. (2)
Goetz, W. (2)
Vázquez-Martín, Sand ... (2)
Mendaza de Cal, Mari ... (2)
Franz, Heather B. (2)
visa färre...
Lärosäte
Luleå tekniska universitet (59)
Malmö universitet (1)
RISE (1)
Språk
Engelska (58)
Spanska (1)
Forskningsämne (UKÄ/SCB)
Teknik (54)
Naturvetenskap (18)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy