SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(del Castillo Diez F.) "

Sökning: WFRF:(del Castillo Diez F.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Acevedo, F., et al. (författare)
  • A practical culture technique for enhanced production of manganese peroxidase by Anthracophyllum discolor Sp4
  • 2011
  • Ingår i: Brazilian archives of biology and technology. - 1516-8913 .- 1678-4324. ; 54:6, s. 1175-1186
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, different growth conditions of Anthracophyllum discolor Sp4 including the effect of agitation, additions of lignocellulosic support, inducer and surfactant were evaluated on the MnP production in Kirk medium using a culture system made up of the tubes containing the glass bead. The highest MnP production (1,354 U/L on day 13) was obtained when the medium was supplemented with wheat grain and 0.25 mM MnSO 4 as inducer, under static conditions at 30°C. Two isoenzymes were purified (35 and 38 kDa respectively). MnP presented a maximal activity in the pH range between 4.5 and 5.5, a relatively high temperature tolerance (50°C) and a high catalytic activity for 2,6-dimethoxyphenol and hydrogen peroxide.
  •  
5.
  • Acevedo, F., et al. (författare)
  • Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor
  • 2010
  • Ingår i: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 80:3, s. 271-278
  • Tidskriftsartikel (refereegranskat)abstract
    • Manganese peroxidase (MnP) produced by Anthracophyllum discolor, a Chilean white rot fungus, was immobilized on nanoclay obtained from volcanic soil and its ability to degrade polycyclic aromatic hydrocarbons (PAHs) compared with the free enzyme was evaluated. At the same time, nanoclay characterization was performed.Nanoclay characterization by transmission electronic microscopy showed a particle average size smaller than 100nm. The isoelectric points (IEP) of nanoclay and MnP from A. discolor were 7.0 and 3.7, respectively, as determined by micro electrophoresis migration and preparative isoelectric focusing. Results indicated that 75% of the enzyme was immobilized on the nanoclay through physical adsorption. As compared to the free enzyme, immobilized MnP from A. discolor achieved an improved stability to temperature and pH. The activation energy (Ea) value for immobilized MnP (51.9kJmol -1) was higher than that of the free MnP (34.4kJmol -1).The immobilized enzyme was able to degrade pyrene (>86%), anthracene (>65%), alone or in mixture, and to a less extent fluoranthene (<15.2%) and phenanthrene (<8.6%). Compared to free MnP from A. discolor, the enzyme immobilized on nanoclay enhanced the enzymatic transformation of anthracene in soil.Overall results indicate that nanoclay, a carrier of natural origin, is a suitable support material for MnP immobilization. In addition, immobilized MnP shows an increased stability to high temperature, pH and time storage, as well as an enhanced PAHs degradation efficiency in soil. All these characteristics may suggest the possible use of nanoclay-immobilized MnP from A. discolor as a valuable option for in situ bioremediation purposes. © 2010 Elsevier Ltd.
  •  
6.
  • Acevedo, F., et al. (författare)
  • Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor
  • 2011
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 185:1, s. 212-219
  • Tidskriftsartikel (refereegranskat)abstract
    • The degradation of three- and four-ring polycyclic aromatic hydrocarbons (PAHs) in Kirk medium by Anthracophyllum discolor, a white-rot fungus isolated from the forest of southern Chile, was evaluated. In addition, the removal efficiency of three-, four- and five-ring PAHs in contaminated soil bioaugmented with A. discolor in the absence and presence of indigenous soil microorganisms was investigated. Production of lignin-degrading enzymes and PAH mineralization in the soil were also determined. A. discolor was able to degrade PAHs in Kirk medium with the highest removal occurring in a PAH mixture, suggesting synergistic effects between PAHs or possible cometabolism. A high removal capability for phenanthrene (62%), anthracene (73%), fluoranthene (54%), pyrene (60%) and benzo(a)pyrene (75%) was observed in autoclaved soil inoculated with A. discolor in the absence of indigenous microorganisms, associated with the production of manganese peroxidase (MnP). The metabolites found in the PAH degradation were anthraquinone, phthalic acid, 4-hydroxy-9-fluorenone, 9-fluorenone and 4,5-dihydropyrene. A. discolor was able to mineralize 9% of the phenanthrene. In non-autoclaved soil, the inoculation with A. discolor did not improve the removal efficiency of PAHs. Suitable conditions must be found to promote a successful fungal bioaugmentation in non-autoclaved soils. © 2010 Elsevier B.V.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy