SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(van Hal Jurgen) "

Search: WFRF:(van Hal Jurgen)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Keuper, Frida, et al. (author)
  • A frozen feast : thawing permafrost increases plant-available nitrogen in subarctic peatlands
  • 2012
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 18:6, s. 1998-2007
  • Journal article (peer-reviewed)abstract
    • Many of the world's northern peatlands are underlain by rapidly thawing permafrost. Because plant production in these peatlands is often nitrogen (N)-limited, a release of N stored in permafrost may stimulate net primary production or change species composition if it is plant-available. In this study, we aimed to quantify plant-available N in thawing permafrost soils of subarctic peatlands. We compared plant-available N-pools and -fluxes in near-surface permafrost (010cm below the thawfront) to those taken from a current rooting zone layer (515cm depth) across five representative peatlands in subarctic Sweden. A range of complementary methods was used: extractions of inorganic and organic N, inorganic and organic N-release measurements at 0.5 and 11 degrees C (over 120days, relevant to different thaw-development scenarios) and a bioassay with Poa alpina test plants. All extraction methods, across all peatlands, consistently showed up to seven times more plant-available N in near-surface permafrost soil compared to the current rooting zone layer. These results were supported by the bioassay experiment, with an eightfold larger plant N-uptake from permafrost soil than from other N-sources such as current rooting zone soil or fresh litter substrates. Moreover, net mineralization rates were much higher in permafrost soils compared to soils from the current rooting zone layer (273mgNm-2 and 1348mgNm-2 per growing season for near-surface permafrost at 0.5 degrees C and 11 degrees C respectively, compared to -30mgNm-2 for current rooting zone soil at 11 degrees C). Hence, our results demonstrate that near-surface permafrost soil of subarctic peatlands can release a biologically relevant amount of plant available nitrogen, both directly upon thawing as well as over the course of a growing season through continued microbial mineralization of organically bound N. Given the nitrogen-limited nature of northern peatlands, this release may have impacts on both plant productivity and species composition.
  •  
3.
  • Keuper, Frida, et al. (author)
  • Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species
  • 2017
  • In: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 23:10, s. 4257-4266
  • Journal article (peer-reviewed)abstract
    • Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant-available N around the thaw-front. Because plant production in these peatlands is N-limited, such changes may substantially affect net primary production and species composition. We aimed to identify the potential impact of increased N-availability due to permafrost thawing on subarctic peatland plant production and species performance, relative to the impact of increased N-availability in superficial organic layers. Therefore, we investigated whether plant roots are present at the thaw-front (45 cm depth) and whether N-uptake (N-15-tracer) at the thaw-front occurs during maximum thaw-depth, coinciding with the end of the growing season. Moreover, we performed a unique 3-year belowground fertilization experiment with fully factorial combinations of deep-(thaw-front) and shallow-fertilization (10 cm depth) and controls. We found that certain species are present with roots at the thaw-front (Rubus chamaemorus) and have the capacity (R. chamaemorus, Eriophorum vaginatum) for N-uptake from the thaw-front between autumn and spring when aboveground tissue is largely senescent. In response to 3-year shallow-belowground fertilization (S) both shallow-(Empetrum hermaphroditum) and deep-rooting species increased aboveground biomass and N-content, but only deep-rooting species responded positively to enhanced nutrient supply at the thaw-front (D). Moreover, the effects of shallow-fertilization and thaw-front fertilization on aboveground biomass production of the deep-rooting species were similar in magnitude (S: 71%; D: 111% increase compared to control) and additive (S + D: 181% increase). Our results show that plant-available N released from thawing permafrost can form a thus far overlooked additional N-source for deep-rooting subarctic plant species and increase their biomass production beyond the already established impact of warming-driven enhanced shallow N-mineralization. This may result in shifts in plant community composition and may partially counteract the increased carbon losses from thawing permafrost.
  •  
4.
  • Keuper, Frida, et al. (author)
  • Tundra in the rain : Differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra
  • 2012
  • In: Ambio. - : Springer Netherlands. - 0044-7447 .- 1654-7209. ; 41:Suppl. 3, s. 269-280
  • Journal article (peer-reviewed)abstract
    • Precipitation amounts and patterns at high latitude sites have been predicted to change as a result of global climatic changes. We addressed vegetation responses to three years of experimentally increased summer precipitation in two previously unaddressed tundra types: Betula nana-dominated shrub tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year(-1)) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation.
  •  
5.
  • Weedon, James T., et al. (author)
  • Community adaptation to temperature explains abrupt soil bacterial community shift along a geothermal gradient on Iceland
  • 2023
  • In: Soil Biology and Biochemistry. - : Elsevier BV. - 0038-0717. ; 177
  • Journal article (peer-reviewed)abstract
    • Understanding how and why soil microbial communities respond to temperature changes is important for understanding the drivers of microbial distribution and abundance. Studying soil microbe responses to warming is often made difficult by concurrent warming effects on soil and vegetation and by a limited number of warming levels preventing the detection of non-linear effects. A unique area in Iceland, where soil temperatures have recently increased due to geothermic activity, created a stable warming gradient in both grassland (dominated by Agrostis capillaris) and forest (Picea sitchensis) vegetation. By sampling soils which had been subjected to four years of temperature elevation (ambient (MAT 5.2 °C) to +40 °C), we investigated the shape of the response of soil bacterial communities to warming, and their associated community temperature adaptation. We used 16S rRNA amplicon sequencing to profile bacterial communities, and bacterial growth-based assays (3H-Leu incorporation) to characterize community adaptation using a temperature sensitivity index (SI, log (growth at 40 °C/4 °C)). Despite highly dissimilar bacterial community composition between the grassland and forest, they adapted similarly to warming. SI was 0.6 (equivalent to a minimum temperature for growth of between −6 and −7 °C) in both control plots. Both diversity and community composition, as well as SI, showed similar threshold dynamics along the soil temperature gradient. There were no significant changes up to soil warming of 6–9 °C above ambient, beyond which all indices shifted in parallel, with SI increasing from 0.6 to 1.5. The consistency of these responses provide evidence for an important role for temperature as a direct driver of bacterial community shifts along soil temperature gradients.
  •  
6.
  • Krab, Eveline J., et al. (author)
  • Northern peatland Collembola communities unaffected by three summers of simulated extreme precipitation
  • 2014
  • In: Agriculture, Ecosystems & Environment. Applied Soil Ecology. - : Elsevier BV. - 0929-1393 .- 1873-0272. ; 79, s. 70-76
  • Journal article (peer-reviewed)abstract
    • Extreme climate events are observed and predicted to increase in frequency and duration in high-latitudeecosystems as a result of global climate change. This includes extreme precipitation events, which maydirectly impact on belowground food webs and ecosystem functioning by their physical impacts and byaltering local soil moisture conditions.We assessed responses of the Collembola community in a northern Sphagnum fuscum-dominatedombrotrophic peatland to three years of experimentally increased occurrence of extreme precipitationevents. Annual summer precipitation was doubled (an increase of 200 mm) by 16 simulated extremerain events within the three months growing season, where on each occasion 12.5 mm of rain was addedwithin a few minutes. Despite this high frequency and intensity of the rain events, no shifts in Collemboladensity, relative species abundances and community weighted means of three relevant traits (moisturepreference, vertical distribution and body size) were observed. This strongly suggests that the peatlandCollembola community is unaffected by the physical impacts of extreme precipitation and the short-termvariability in moisture conditions. The lack of response is most likely reinforced by the fact that extremeprecipitation events do not seem to alter longer-term soil moisture conditions in the peat layers inhabitedby soil fauna.This study adds evidence to the observation that the biotic components of northern ombrotrophicpeatlands are hardly responsive to an increase in extreme summer precipitation events. Given the importance of these ecosystems for the global C balance, these findings significantly contribute to the currentknowledge of the ecological impact of future climate scenarios. (C) 2014 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view