SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van der Schouw Yvonne T.) ;pers:(Franks Paul W)"

Sökning: WFRF:(van der Schouw Yvonne T.) > Franks Paul W

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Scott, Robert A., et al. (författare)
  • A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease
  • 2016
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 8:341
  • Tidskriftsartikel (refereegranskat)abstract
    • Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to guide development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in six genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow-up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association of those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr; rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomized controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process.
  •  
2.
  • Scott, Robert A., et al. (författare)
  • An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:11, s. 2888-2902
  • Tidskriftsartikel (refereegranskat)abstract
    • To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel. Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects). We identified 13 novel T2D-associated loci (P < 5 x 10(-8)), including variants near the GLP2R, GIP, and HLA-DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci. Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants. Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes. Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology.
  •  
3.
  • Wessel, Jennifer, et al. (författare)
  • Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF = 1.4%) with lower FG (beta = -0.09 +/- 0.01 mmol l(-1), P = 3.4 x 10(-12)), T2D risk (OR[95% CI] = 0.86[0.76-0.96], P = 0.010), early insulin secretion (beta = -0.07 +/- 0.035 pmol(insulin) mmol(glucose)(-1), P = 0.048), but higher 2-h glucose (beta = 0.16 +/- 0.05 mmol l(-1), P = 4.3 x 10(-4)). We identify a gene-based association with FG at G6PC2 (p(SKAT) = 6.8 x 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF = 20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (beta = 0.02 +/- 0.004 mmol l(-1), P = 1.3 x 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
  •  
4.
  • Li, Chen, et al. (författare)
  • Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length
  • 2020
  • Ingår i: American Journal of Human Genetics. - : CELL PRESS. - 0002-9297 .- 1537-6605. ; 106:3, s. 389-404
  • Tidskriftsartikel (refereegranskat)abstract
    • Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1 , PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease.
  •  
5.
  • Forouhi, Nita G., et al. (författare)
  • Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes : the EPIC-InterAct case-cohort study
  • 2014
  • Ingår i: LANCET DIABETES & ENDOCRINOLOGY. - 2213-8587 .- 2213-8595. ; 2:10, s. 810-818
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Conflicting evidence exists regarding the association between saturated fatty acids (SFAs) and type 2 diabetes. In this longitudinal case-cohort study, we aimed to investigate the prospective associations between objectively measured individual plasma phospholipid SFAs and incident type 2 diabetes in EPIC-InterAct participants. Methods The EPIC-InterAct case-cohort study includes 12 403 people with incident type 2 diabetes and a representative subcohort of 16 154 individuals who were selected from a cohort of 340 234 European participants with 3 . 99 million person-years of follow-up (the EPIC study). Incident type 2 diabetes was ascertained until Dec 31, 2007, by a review of several sources of evidence. Gas chromatography was used to measure the distribution of fatty acids in plasma phospholipids (mol%); samples from people with type 2 diabetes and subcohort participants were processed in a random order by centre, and laboratory staff were masked to participant characteristics. We estimated country-specific hazard ratios (HRs) for associations per SD of each SFA with incident type 2 diabetes using Prentice-weighted Cox regression, which is weighted for case-cohort sampling, and pooled our findings using random-effects meta-analysis. Findings SFAs accounted for 46% of total plasma phospholipid fatty acids. In adjusted analyses, different individual SFAs were associated with incident type 2 diabetes in opposing directions. Even-chain SFAs that were measured (14: 0 [myristic acid], 16: 0 [palmitic acid], and 18: 0 [stearic acid]) were positively associated with incident type 2 diabetes (HR [95% CI] per SD difference: myristic acid 1.15 [95% CI 1.09-1.22], palmitic acid 1.26 [1.15-1.37], and stearic acid 1.06 [1.00-1.13]). By contrast, measured odd-chain SFAs (15: 0 [pentadecanoic acid] and 17: 0 [heptadecanoic acid]) were inversely associated with incident type 2 diabetes (HR [95% CI] per 1 SD difference: 0.79 [0.73-0.85] for pentadecanoic acid and 0.67 [0.63-0.71] for heptadecanoic acid), as were measured longer-chain SFAs (20: 0 [arachidic acid], 22:0 [behenic acid], 23:0 [tricosanoic acid], and 24:0 [lignoceric acid]), with HRs ranging from 0.72 to 0.81 (95% CIs ranging between 0.61 and 0.92). Our findings were robust to a range of sensitivity analyses. Interpretation Different individual plasma phospholipid SFAs were associated with incident type 2 diabetes in opposite directions, which suggests that SFAs are not homogeneous in their effects. Our findings emphasise the importance of the recognition of subtypes of these fatty acids. An improved understanding of differences in sources of individual SFAs from dietary intake versus endogenous metabolism is needed.
  •  
6.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
7.
  • Lotta, Luca A., et al. (författare)
  • Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance
  • 2017
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 49:1, s. 17-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the mechanisms underlying this link remain obscure. Using an integrative genomic approach, we identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting insulin levels adjusted for BMI, lower HDL cholesterol levels and higher triglyceride levels) and provide evidence that their link with higher cardiometabolic risk is underpinned by an association with lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic contribution to familial partial lipodystrophy type 1, a severe form of insulin resistance, and highlight shared molecular mechanisms in common/mild and rare/severe insulin resistance. Population-level genetic analyses combined with experiments in cellular models implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognized molecules influencing adipocyte differentiation. Our findings support the notion that limited storage capacity of peripheral adipose tissue is an important etiological component in insulin-resistant cardiometabolic disease and highlight genes and mechanisms underpinning this link.
  •  
8.
  • Patel, Pinal S, et al. (författare)
  • The prospective association between total and type of fish intake and type 2 diabetes in 8 European countries : EPIC-InterAct Study
  • 2012
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 95:6, s. 1445-1453
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epidemiologic evidence of an association between fish intake and type 2 diabetes (T2D) is inconsistent and unresolved. Objective: The objective was to examine the association between total and type of fish intake and T2D in 8 European countries. Design: This was a case-cohort study, nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) study, with 3.99 million person-years of follow-up, 12,403 incident diabetes cases, and a random subcohort of 16,835 individuals from 8 European countries. Habitual fish intake (lean fish, fatty fish, total fish, shellfish, and combined fish and shellfish) was assessed by country-specific dietary questionnaires. HRs were estimated in each country by using Prentice-weighted Cox regression models and pooled by using a random-effects meta-analysis. Results: No overall association was found between combined fish and shellfish intake and incident T2D per quartile (adjusted HR: 1.00; 95% Cl: 0.94, 1.06; P-trend = 0.99). Total fish, lean fish, and shellfish intakes separately were also not associated with T2D, but fatty fish intake was weakly inversely associated with T2D: adjusted HR per quartile 0.97 (0.94, 1.00), with an HR of 0.84 (0.70, 1.01), 0.85 (0.76, 0.95), and 0.87 (0.78, 0.97) for a comparison of the second, third, and fourth quartiles with the lowest quartile of intake, respectively (P-trend = 0.06). Conclusions: These findings suggest that lean fish, total fish, and shellfish intakes are not associated with incident diabetes but that fatty fish intake may be weakly inversely associated. Replication of these findings in other populations and investigation of the mechanisms underlying these associations are warranted. Meanwhile, current public health recommendations on fish intake should remain unchanged. Am J Clin Nutr 2012;95:1445-53,
  •  
9.
  • Brand, Judith S., et al. (författare)
  • Age at Menopause, Reproductive Life Span, and Type 2 Diabetes Risk
  • 2013
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 36:4, s. 1012-1019
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Age at menopause is an important determinant of future health outcomes, but little is known about its relationship with type 2 diabetes. We examined the associations of menopausal age and reproductive life span (menopausal age minus menarcheal age) with diabetes risk.RESEARCH DESIGN AND METHODS-Data were obtained from the InterAct study, a prospective case-cohort study nested within the European Prospective Investigation into Cancer and Nutrition. A total of 3,691 postmenopausal type 2 diabetic case subjects and 4,408 subcohort members were included in the analysis, with a median follow-up of 11 years. Prentice weighted Cox proportional hazards models were adjusted for age, known risk factors for diabetes, and reproductive factors, and effect modification by BMI, waist circumference, and smoking was studied.RESULTS-Mean (SD) age of the subcohort was 59.2 (5.8) years. After multivariable adjustment, hazard ratios (HRs) of type 2 diabetes were 1.32 (95% CI 1.04-1.69), 1.09 (0.90-1.31), 0.97 (0.86-1.10), and 0.85 (0.70-1.03) for women with menopause at ages <40, 40-44, 45-49, and >= 55 years, respectively, relative to those with menopause at age 50-54 years. The HR per SD younger age at menopause was 1.08 (1.02-1.14). Similarly, a shorter reproductive life span was associated with a higher diabetes risk (HR per SD lower reproductive life span 1.06 [ 1.01-1.12]). No effect modification by BMI, waist circumference, or smoking was observed (P interaction all > 0.05).CONCLUSIONS-Early menopause is associated with a greater risk of type 2 diabetes. Diabetes Care 36:1012-1019, 2013
  •  
10.
  • Forouhi, Nita G., et al. (författare)
  • Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes : The EPIC-InterAct Case-Cohort Study
  • 2016
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs) are related to type 2 diabetes (T2D) is debated. Objectively measured plasma PUFAs can help to clarify these associations.Methods and Findings Plasma phospholipid PUFAs were measured by gas chromatography among 12,132 incident T2D cases and 15,919 subcohort participants in the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct study across eight European countries. Country-specific hazard ratios (HRs) were estimated using Prentice-weighted Cox regression and pooled by random-effects meta-analysis. We also systematically reviewed published prospective studies on circulating PUFAs and T2D risk and pooled the quantitative evidence for comparison with results from EPIC-InterAct. In EPIC-InterAct, among long-chain n-3 PUFAs, a-linolenic acid (ALA) was inversely associated with T2D (HR per standard deviation [SD] 0.93; 95% CI 0.88-0.98), but eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were not significantly associated. Among n-6 PUFAs, linoleic acid (LA) (0.80; 95% CI 0.77-0.83) and eicosadienoic acid (EDA) (0.89; 95% CI 0.85-0.94) were inversely related, and arachidonic acid (AA) was not significantly associated, while significant positive associations were observed with.-linolenic acid (GLA), dihomo-GLA, docosatetraenoic acid (DTA), and docosapentaenoic acid (n6-DPA), with HRs between 1.13 to 1.46 per SD. These findings from EPIC-InterAct were broadly similar to comparative findings from summary estimates from up to nine studies including between 71 to 2,499 T2D cases. Limitations included potential residual confounding and the inability to distinguish between dietary and metabolic influences on plasma phospholipid PUFAs.Conclusions These large-scale findings suggest an important inverse association of circulating plant-origin n-3 PUFA (ALA) but no convincing association of marine-derived n3 PUFAs (EPA and DHA) with T2D. Moreover, they highlight that the most abundant n6-PUFA (LA) is inversely associated with T2D. The detection of associations with previously less well-investigated PUFAs points to the importance of considering individual fatty acids rather than focusing on fatty acid class.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy