SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van der Wee Nic J. A.) ;hsvcat:5"

Sökning: WFRF:(van der Wee Nic J. A.) > Samhällsvetenskap

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
2.
  • Groenewold, Nynke A., et al. (författare)
  • Volume of subcortical brain regions in social anxiety disorder : mega-analytic results from 37 samples in the ENIGMA-Anxiety Working Group
  • 2023
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 28:3, s. 1079-1089
  • Tidskriftsartikel (refereegranskat)abstract
    • There is limited convergence in neuroimaging investigations into volumes of subcortical brain regions in social anxiety disorder (SAD). The inconsistent findings may arise from variations in methodological approaches across studies, including sample selection based on age and clinical characteristics. The ENIGMA-Anxiety Working Group initiated a global mega-analysis to determine whether differences in subcortical volumes can be detected in adults and adolescents with SAD relative to healthy controls. Volumetric data from 37 international samples with 1115 SAD patients and 2775 controls were obtained from ENIGMA-standardized protocols for image segmentation and quality assurance. Linear mixed-effects analyses were adjusted for comparisons across seven subcortical regions in each hemisphere using family-wise error (FWE)-correction. Mixed-effects d effect sizes were calculated. In the full sample, SAD patients showed smaller bilateral putamen volume than controls (left: d = −0.077, pFWE = 0.037; right: d = −0.104, pFWE = 0.001), and a significant interaction between SAD and age was found for the left putamen (r = −0.034, pFWE = 0.045). Smaller bilateral putamen volumes (left: d = −0.141, pFWE < 0.001; right: d = −0.158, pFWE < 0.001) and larger bilateral pallidum volumes (left: d = 0.129, pFWE = 0.006; right: d = 0.099, pFWE = 0.046) were detected in adult SAD patients relative to controls, but no volumetric differences were apparent in adolescent SAD patients relative to controls. Comorbid anxiety disorders and age of SAD onset were additional determinants of SAD-related volumetric differences in subcortical regions. To conclude, subtle volumetric alterations in subcortical regions in SAD were detected. Heterogeneity in age and clinical characteristics may partly explain inconsistencies in previous findings. The association between alterations in subcortical volumes and SAD illness progression deserves further investigation, especially from adolescence into adulthood.
  •  
3.
  • Bas-Hoogendam, Janna Marie, et al. (författare)
  • Voxel-based morphometry multi-center mega-analysis of brain structure in social anxiety disorder
  • 2017
  • Ingår i: NeuroImage. - : Elsevier BV. - 2213-1582. ; 16, s. 678-688
  • Tidskriftsartikel (refereegranskat)abstract
    • Social anxiety disorder (SAD) is a prevalent and disabling mental disorder, associated with significant psychiatric co-morbidity. Previous research on structural brain alterations associated with SAD has yielded inconsistent results concerning the direction of the changes in gray matter (GM) in various brain regions, as well as on the relationship between brain structure and SAD-symptomatology. These heterogeneous findings are possibly due to limited sample sizes. Multi-site imaging offers new opportunities to investigate SAD-related alterations in brain structure in larger samples.An international multi-center mega-analysis on the largest database of SAD structural T1-weighted 3T MRI scans to date was performed to compare GM volume of SAD-patients (n = 174) and healthy control (HC)-participants (n = 213) using voxel-based morphometry. A hypothesis-driven region of interest (ROI) approach was used, focusing on the basal ganglia, the amygdala-hippocampal complex, the prefrontal cortex, and the parietal cortex. SAD-patients had larger GM volume in the dorsal striatum when compared to HC-participants. This increase correlated positively with the severity of self-reported social anxiety symptoms. No SAD-related differences in GM volume were present in the other ROIs. Thereby, the results of this mega-analysis suggest a role for the dorsal striatum in SAD, but previously reported SAD-related changes in GM in the amygdala, hippocampus, precuneus, prefrontal cortex and parietal regions were not replicated. Our findings emphasize the importance of large sample imaging studies and the need for meta-analyses like those performed by the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium.
  •  
4.
  •  
5.
  • Bas-Hoogendam, Janna Marie, et al. (författare)
  • ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders
  • 2022
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 83-112
  • Forskningsöversikt (refereegranskat)abstract
    • Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders.
  •  
6.
  • Aghajani, Moji, et al. (författare)
  • Neural processing of socioemotional content in conduct-disordered offenders with limited prosocial emotions
  • 2021
  • Ingår i: Progress in Neuro-psychopharmacology and Biological Psychiatry. - : Elsevier. - 0278-5846 .- 1878-4216. ; 105
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Reflecting evidence on Callous-Unemotional (CU) traits (e.g., lack of empathy and guilt, shallow affect), the DSM-5 added a categorical CU-based specifier for Conduct Disorder (CD), labeled 'with Limited Prosocial Emotions' (LPE). Theory and prior work suggest that CD youths with and without LPE will likely differ in neural processing of negative socioemotional content. This proposition, however, is mainly derived from studies employing related, yet distinct, operationalizations of CU traits (e.g., dimensional measure/median split/top quartile), thus precluding direct examination of LPE-specific neurocognitive deficits.METHODS: Employing a DSM-5 informed LPE proxy, neural processing of recognizing and resonating negative socioemotional content (angry and fearful faces) was therefore examined here among CD offenders with LPE (CD/LPE+; N = 19), relative to CD offenders without LPE (CD/LPE-; N = 31) and healthy controls (HC; N = 31).RESULTS: Relative to HC and CD/LPE- youths and according to a linearly increasing trend (CD/LPE- < HC < CD/LPE+), CD/LPE+ youths exhibited hyperactivity within dorsolateral, dorsomedial, and ventromedial prefrontal regions during both emotion recognition and resonance. During emotion resonance, CD/LPE+ youths additionally showed increased activity within the posterior cingulate and precuneal cortices in comparison to HC and CD/LPE- youths, which again followed a linearly increasing trend (CD/LPE- < HC < CD/LPE+). These effects moreover seemed specific to the LPE specifier, when compared to a commonly employed method for CU-based grouping in CD (i.e., median split on CU scores).CONCLUSIONS: These data cautiously suggest that CD/LPE+ youths may exhibit an over-reliance on cortical neurocognitive systems when explicitly processing negative socioemotional information, which could have adverse downstream effects on relevant socioemotional functions. The findings thus seem to provide novel, yet preliminary, clues on the neurocognitive profile of CD/LPE+, and additionally highlight the potential scientific utility of the LPE specifier.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (5)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
van der Wee, Nic J. ... (5)
Thompson, Paul M (3)
Aghajani, Moji (3)
Furmark, Tomas (3)
Carlbring, Per (2)
Ching, Christopher R ... (2)
visa fler...
Thomopoulos, Sophia ... (2)
Frick, Andreas (2)
Engman, Jonas (2)
Andersson, Gerhard (2)
Franke, Barbara (1)
Fredriksson, Mats (1)
Fredrikson, Mats (1)
Landén, Mikael, 1966 (1)
Liberg, Benny (1)
Ekman, Carl-Johan (1)
Agartz, Ingrid (1)
Alda, Martin (1)
Brouwer, Rachel M (1)
Cannon, Dara M (1)
Dannlowski, Udo (1)
Dohm, Katharina (1)
Grotegerd, Dominik (1)
Hajek, Tomas (1)
Malt, Ulrik F (1)
McDonald, Colm (1)
Melle, Ingrid (1)
Nenadić, Igor (1)
Stein, Frederike (1)
Westlye, Lars T (1)
Andreassen, Ole A (1)
Wang, Lei (1)
Nyberg, Lars (1)
Klapwijk, Eduard T. (1)
Andershed, Henrik, 1 ... (1)
van der Wee, Nic J. (1)
Vermeiren, Robert R. ... (1)
Fanti, Kostas A. (1)
Colins, Olivier F. (1)
Coppola, Giovanni (1)
Weale, Michael E. (1)
Nilsson, Lars-Göran (1)
de Geus, Eco J. C. (1)
Martin, Nicholas G. (1)
Boomsma, Dorret I. (1)
Hardy, John (1)
Almeida, Jorge (1)
Djurovic, Srdjan (1)
Meyer-Lindenberg, An ... (1)
Ramasamy, Adaikalava ... (1)
visa färre...
Lärosäte
Karolinska Institutet (4)
Umeå universitet (3)
Uppsala universitet (3)
Stockholms universitet (3)
Göteborgs universitet (1)
Örebro universitet (1)
visa fler...
Linköpings universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy