SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(von Wachenfeldt Anna) ;pers:(Ehrencrona Hans)"

Sökning: WFRF:(von Wachenfeldt Anna) > Ehrencrona Hans

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hollestelle, Antoinette, et al. (författare)
  • No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
  • 2016
  • Ingår i: Gynecologic Oncology. - : Elsevier BV. - 0090-8258 .- 1095-6859. ; 141:2, s. 386-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
  •  
2.
  • Maxwell, Christopher A., et al. (författare)
  • Interplay between BRCA1 and RHAMM Regulates Epithelial Apicobasal Polarization and May Influence Risk of Breast Cancer
  • 2011
  • Ingår i: PLoS Biology. - : Public Library of Science (PLoS). - 1545-7885 .- 1544-9173. ; 9:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.
  •  
3.
  • Öfverholm, Anna, et al. (författare)
  • Extended genetic analysis and tumor characteristics in over 4600 women with suspected hereditary breast and ovarian cancer
  • 2023
  • Ingår i: BMC Cancer. - : BioMed Central (BMC). - 1471-2407. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundGenetic screening for pathogenic variants (PVs) in cancer predisposition genes can affect treatment strategies, risk prediction and preventive measures for patients and families. For decades, hereditary breast and ovarian cancer (HBOC) has been attributed to PVs in the genes BRCA1 and BRCA2, and more recently other rare alleles have been firmly established as associated with a high or moderate increased risk of developing breast and/or ovarian cancer. Here, we assess the genetic variation and tumor characteristics in a large cohort of women with suspected HBOC in a clinical oncogenetic setting.MethodsWomen with suspected HBOC referred from all oncogenetic clinics in Sweden over a six-year inclusion period were screened for PVs in 13 clinically relevant genes. The genetic outcome was compared with tumor characteristics and other clinical data collected from national cancer registries and hospital records.ResultsIn 4622 women with breast and/or ovarian cancer the overall diagnostic yield (the proportion of women carrying at least one PV) was 16.6%. BRCA1/2 PVs were found in 8.9% of women (BRCA1 5.95% and BRCA2 2.94%) and PVs in the other breast and ovarian cancer predisposition genes in 8.2%: ATM (1.58%), BARD1 (0.45%), BRIP1 (0.43%), CDH1 (0.11%), CHEK2 (3.46%), PALB2 (0.84%), PTEN (0.02%), RAD51C (0.54%), RAD51D (0.15%), STK11 (0) and TP53 (0.56%). Thus, inclusion of the 11 genes in addition to BRCA1/2 increased diagnostic yield by 7.7%. The yield was, as expected, significantly higher in certain subgroups such as younger patients, medullary breast cancer, higher Nottingham Histologic Grade, ER-negative breast cancer, triple-negative breast cancer and high grade serous ovarian cancer. Age and tumor subtype distributions differed substantially depending on genetic finding.ConclusionsThis study contributes to understanding the clinical and genetic landscape of breast and ovarian cancer susceptibility. Extending clinical genetic screening from BRCA1 and BRCA2 to 13 established cancer predisposition genes almost doubles the diagnostic yield, which has implications for genetic counseling and clinical guidelines. The very low yield in the syndrome genes CDH1, PTEN and STK11 questions the usefulness of including these genes on routine gene panels.
  •  
4.
  • Wendt, Camilla, et al. (författare)
  • A search for modifying genetic factors in CHEK2:c.1100delC breast cancer patients
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The risk of breast cancer associated with CHEK2:c.1100delC is 2-threefold but higher in carriers with a family history of breast cancer than without, suggesting that other genetic loci in combination with CHEK2:c.1100delC confer an increased risk in a polygenic model. Part of the excess familial risk has been associated with common low-penetrance variants. This study aimed to identify genetic loci that modify CHEK2:c.1100delC-associated breast cancer risk by searching for candidate risk alleles that are overrepresented in CHEK2:c.1100delC carriers with breast cancer compared with controls. We performed whole-exome sequencing in 28 breast cancer cases with germline CHEK2:c.1100delC, 28 familial breast cancer cases and 70 controls. Candidate alleles were selected for validation in larger cohorts. One recessive synonymous variant, rs16897117, was suggested, but no overrepresentation of homozygous CHEK2:c.1100delC carriers was found in the following validation. Furthermore, 11 non-synonymous candidate alleles were suggested for further testing, but no significant difference in allele frequency could be detected in the validation in CHEK2:c.1100delC cases compared with familial breast cancer, sporadic breast cancer and controls. With this method, we found no support for a CHEK2:c.1100delC-specific genetic modifier. Further studies of CHEK2:c.1100delC genetic modifiers are warranted to improve risk assessment in clinical practice.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy