SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alfoeldi Jessica) srt2:(2014)"

Sökning: WFRF:(Alfoeldi Jessica) > (2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brawand, David, et al. (författare)
  • The genomic substrate for adaptive radiation in African cichlid fish
  • 2014
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 513:7518, s. 375-381
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand themolecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.</p>
  •  
2.
  • Carneiro, Miguel, et al. (författare)
  • Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication
  • 2014
  • Ingår i: Science. - 0036-8075 .- 1095-9203. ; 345:6200, s. 1074-1079
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.</p>
  •  
3.
  • Höppner, Marc P., et al. (författare)
  • An Improved Canine Genome and a Comprehensive Catalogue of Coding Genes and Non-Coding Transcripts
  • 2014
  • Ingår i: PLoS ONE. - 1932-6203 .- 1932-6203. ; 9:3, s. e91172
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The domestic dog, Canis familiaris, is a well-established model system for mapping trait and disease loci. While the original draft sequence was of good quality, gaps were abundant particularly in promoter regions of the genome, negatively impacting the annotation and study of candidate genes. Here, we present an improved genome build, canFam3.1, which includes 85 MB of novel sequence and now covers 99.8% of the euchromatic portion of the genome. We also present multiple RNA-Sequencing data sets from 10 different canine tissues to catalog similar to 175,000 expressed loci. While about 90% of the coding genes previously annotated by EnsEMBL have measurable expression in at least one sample, the number of transcript isoforms detected by our data expands the EnsEMBL annotations by a factor of four. Syntenic comparison with the human genome revealed an additional similar to 3,000 loci that are characterized as protein coding in human and were also expressed in the dog, suggesting that those were previously not annotated in the EnsEMBL canine gene set. In addition to,20,700 high-confidence protein coding loci, we found,4,600 antisense transcripts overlapping exons of protein coding genes, similar to 7,200 intergenic multi-exon transcripts without coding potential, likely candidates for long intergenic non-coding RNAs (lincRNAs) and,11,000 transcripts were reported by two different library construction methods but did not fit any of the above categories. Of the lincRNAs, about 6,000 have no annotated orthologs in human or mouse. Functional analysis of two novel transcripts with shRNA in a mouse kidney cell line altered cell morphology and motility. All in all, we provide a much-improved annotation of the canine genome and suggest regulatory functions for several of the novel non-coding transcripts.</p>
4.
  • Peng, Xinxia, et al. (författare)
  • The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease
  • 2014
  • Ingår i: Nature Biotechnology. - 1087-0156 .- 1546-1696. ; 32:12, s. 1250-U114
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission(1-)4. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.</p>
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy