SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fröling Morgan 1966 ) ;pers:(Fransson Kristin 1979)"

Sökning: WFRF:(Fröling Morgan 1966 ) > Fransson Kristin 1979

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arvidsson, Rickard, 1984-, et al. (författare)
  • How much energy is used when producing biofuels?
  • 2012
  • Ingår i: World Bioenergy 2012, Jönköping, Sweden.
  • Konferensbidrag (övrigt vetenskapligt)abstract
    • Considering the increased focus on biofuels, it is important to inform companies and policy-makers about the energy use for production of biofuels in relevant and transparent ways, using well-defined indicators. The amount of fossil energy used in the production of a biofuel (e.g. diesel fuel used in harvesting) is a parameter of obvious interest when comparing different biofuels or when optimizing the production systems. With increasing worldwide production of different biofuels, a shift in focus from fossil energy to the entire energy use will also be necessary. In that context, not only reducing the use of fossil fuels in biofuel production, but also optimizing the use of all energy sources over the whole life cycle becomes an important to ensure the sustainability of biofuels. However, to report and interpret values on life cycle energy use is not straight forward due to methodological difficulties. The impact category ‘energy use’ is frequently used in life cycle assessment (LCA). But the term ‘energy use’ is generally not applied in a transparent and consistent way between different LCA studies of biofuels. It is often unclear whether the total energy use, or only fossil energy, has been considered, and whether primary or secondary energy has been considered. In addition, it is often difficult to tell if and how the energy content of the fuel or the biomass source was included in the energy use. This study presents and discusses the current situation in terms of energy use indicators are applied in LCA studies on biofuels. It was found that the choice of indicator was seldom motivated or discussed in the examined reports and articles, and five inherently different energy use indicators were observed: (1) fossil energy, (2) secondary energy, (3) cumulative energy demand (primary energy), (4) net energy balance, and (5) total extracted energy. As an illustration, we applied these five energy use indicators to the same cradle-to-gate production system (production of palm oil methyl ester), resulting in considerably different output numbers of energy use. This in itself is not unexpected, but indicates the importance of clearly identifying, describing and motivating the choice of energy use indicator. All five indicators can be useful in specific situations, depending on the goal and scope of the individual study, but the choice of indicator needs to be better reported and motivated than what is generally done today. Above all, it is important to avoid direct comparisons between different energy use results calculated using different indicators, since this could lead to misinformed policy decisions.
  •  
2.
  • Arvidsson, Rickard, 1984-, et al. (författare)
  • Assessing the Environmental Impacts of Palm Oil
  • 2011
  • Ingår i: Palm Oil: Nutrition, Uses and Impacts. - 978-1-61209-921-7
  • Bokkapitel (övrigt vetenskapligt)abstract
    • Palm oil is used for cooking in Southeast Asia and Africa and as a food additive in a number of processed foods world-wide. The production of palm oil is increasing, and it is of special interest from a nutritional point of view due to its high energy content and its significant content of micronutrients. In addition, palm oil is increasingly used to produce various biofuels. Due to large production volumes and diverse applications of palm oil, it is highly interesting and important to study the environmental impacts of its production. This chapter discusses how the environmental impacts of palm oil can be assessed, focusing on the life cycle environmental impacts of palm oil in comparison to similar products. A brief overview of life cycle assessment as a method is given, and results are presented together with suggestions for environmental improvements of palm oil cultivation and production. It is shown that the magnitude of the environmental impacts connected to palm oil in relation to other products is heavily affected by the choice of environmental indicators, which in LCA studies consist of both an environmental impact category and a so-called functional unit. Regarding impact categories, the global warming and acidification potentials of palm oil are lower than those of rapeseed oil per kg oil. The water footprint of palm oil and rapeseed oil are about the same on a mass basis, but for the two land use indicators soil erosion and heavy metal accumulation, rapeseed oil has a lower impact than palm oil. Specific interest is given to the life cycle energy use of palm oil in response to the unclear and diverse definitions of this impact category in different studies. It is concluded that there is a need to carefully define the energy use impact category when reporting on palm oil or similar products, and also to differentiate between different kinds of energy sources. If instead of mass the micronutrient content is applied as functional unit, palm oil still has lower global warming potential and acidification than rapeseed oil when compared on the basis of vitamin E content. However, if β-carotene content is used as functional unit, rapeseed oil is not relevant for comparison due to its negligible content of β-carotene. For that case, palm oil is therefore instead compared to tomatoes on a β-carotene basis, since tomatoes are rich in β-carotene. The tomatoes were shown to perform better then palm oil regarding global warming potential on a β-carotene basis. The effects of time and scale on the environmental impacts of palm oil, which includes changes in technical performance and electricity sources, are also discussed in this chapter. It is shown that combustion of the methane formed from the palm oil mill effluent can significantly reduce the global warming potential.
  •  
3.
  • Arvidsson, Rickard, 1984-, et al. (författare)
  • Energy use indicators in energy and life cycle assessments of biofuels: review and recommendations
  • 2012
  • Ingår i: Journal of Cleaner Production. - 0959-6526. ; 31, s. 54-61
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we investigate how indicators for energy use are applied in a set of life cycle assessment (LCA) and energy analysis case studies of biofuels. We found five inherently different types of indicators to describe energy use: (1) fossil energy, (2) secondary energy, (3) cumulative energy demand, (4) net energy balance, and (5) total extracted energy. It was also found that the examined reports and articles, the choice of energy use indicator was seldom motivated or discussed in relation to other energy use indicators. In order to investigate the differences between these indicators, they were applied to a case. The life cycle energy use of palm oil methyl ester was calculated and reported using these five different indicators for energy use, giving considerably different output results. This is in itself not unexpected, but indicates the importance of clearly identifying, describing and motivating the choice of energy use indicator. The indicators can all be useful in specific situations, depending on the goal and scope of the individual study, but the choice of indicators need to be better reported and motivated than what is generally done today.
  •  
4.
  • Arvidsson, Rickard, 1984-, et al. (författare)
  • How do we know the energy use when producing biomaterials or biofuels?
  • 2012
  • Ingår i: Proceedings of ECO-TECH 2012.
  • Konferensbidrag (övrigt vetenskapligt)abstract
    • How much fossil energy that is used in the production of biomaterials or biofuels (e.g. fuel used in harvesting) is a parameter of obvious interest when optimizing the production systems. To use more fossil fuels in the production of a biofuel than what will be available as the biofuel product is obviously a bad idea. With increasing interest in biomaterials and biofuels, a shift from a sole focus on fossil energy will be necessary. Optimized use of energy over the whole life cycle is one important parameter to ensure sustainability. However, to report and interpret values on life cycle energy use is not as straight forward as what might immediately be perceived. The impact category ‘energy use’ is frequently used but is generally not applied in a transparent and consistent way between different studies. Considering the increased focus on biofuels, it is important to inform companies and policy-makers about the energy use of biofuels in relevant and transparent ways with well-defined indicators. The present situation in how energy use indicators are applied was studied in a set of LCA studies of biofuels. It was found that the choice of indicator was seldom motivated or discussed in the examined reports and articles, and five inherently different energy use indicators were observed: (1) fossil energy, (2) secondary energy, (3) cumulative energy demand (primary energy), (4) net energy balance, and (5) total extracted energy. As a test, we applied these five energy use indicators to the same cradle-to-gate production system and they give considerably different output numbers of energy use. This in itself is not unexpected, but indicates the importance of clearly identifying, describing and motivating the choice of energy use indicator. Direct comparisons between different energy use results could lead to misinformed policy decisions.
5.
  • Arvidsson, Rickard, 1984-, et al. (författare)
  • Towards transparent and relevant use of energy use indicators in LCA studies of biofuels
  • 2012
  • Ingår i: 6th SETAC World Congress / SETAC Europe 22nd Annual Meeting in Berlin.
  • Konferensbidrag (övrigt vetenskapligt)abstract
    • The use of energy has led to resource crises during the history of mankind, such as the deforestation of the Mediterranean during antiquity, and of Great Britain before the 19th century, and the oil crisis in the 20th century and continuing. Considering this, the frequent use of the impact category ‘energy use’ in the environmental assessment tool life cycle assessment (LCA) is not surprising. However, in a previous study, some of the authors noted that the term ‘energy use’ was not applied in a transparent and consistent way in LCA studies of biofuels. In this work we investigate how energy use indicators are applied in a set of life cycle assessment (LCA) studies of biofuels. In the examined reports and articles, the choice of indicator was seldom motivated or discussed and we observed five inherently different energy use indicators: (1) fossil energy, (2) secondary energy, (3) cumulative energy demand, (4) net energy balance, and (5) total extracted energy. These five energy use indicators were applied to the same cradle-to-gate production system of palm oil methyl ester (PME), giving considerably different output results. This is in itself not unexpected, but indicates the importance of clearly identifying, describing and motivating the choice of energy use indicator. All five indicators can all be useful in specific situations, depending on the goal and scope of the individual study, but the choice of indicators need to be better reported and motivated than what is generally done today. Authors of LCA studies should first define the purpose of their energy use indicator (fossil scarcity, energy scarcity, energy efficiency, cost/benefit comparison) and may then make a motivated choice of the energy use indicator.
  •  
6.
  • Svanström, Magdalena, 1969-, et al. (författare)
  • Who needs to know what about energy use? The palm oil biofuel case
  • 2013
  • Ingår i: 6th International Conference on Life Cycle Management.
  • Konferensbidrag (övrigt vetenskapligt)abstract
    • In life cycle assessments and energy analyses of palm oil biofuel, the choice of energy use indicators has been found to be arbitrary, poorly motivated and poorly described. This paper discusses the system boundaries represented by different energy use indicators and their appropriateness in terms of different environmental concerns. The paper also discusses the need of different energy use information for different actors in the product life cycle and the resulting need to tailor-make assessments and presentations of assessment results to different audiences.
  •  
7.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy