SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grönlund Rasmus) ;spr:eng;srt2:(2007)"

Sökning: WFRF:(Grönlund Rasmus) > Engelska > (2007)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Mats, et al. (författare)
  • Laser spectroscopy of gas in scattering media at scales ranging from kilometers to millimeters
  • 2007
  • Ingår i: Laser Physics. - MAIK Nauka. - 1054-660X. ; 17:7, s. 893-902
  • Tidskriftsartikel (refereegranskat)abstract
    • Free gases are characterized by their narrow line width, and they can conveniently be studied by laser spectroscopy. The present paper discusses the monitoring of such ambient pressure gases, which are dispersed in scattering media such as aerosol-laden atmospheres, solids, or liquids. Atmospheric work basically constitutes the well-known field of differential absorption lidar (DIAL), while the study of free gas in solids and liquids was initiated more recently under the name of GASMAS (GAs in Scattering Media Absorption Spectroscopy). We discuss the connections between the two techniques, which are extensively used in our labortory. Thus, we span the field from trace-gas mapping of gases in the lower atmosphere to gas studies in construction materials, food products, and the human body. We show that the basic ideas are very similar, while the spatial and temporal scales vary greatly.
  •  
2.
  • Grönlund, Rasmus, et al. (författare)
  • Fluorescence lidar multispectral imaging for diagnosis of historical monuments - Övedskloster, a Swedish case study
  • 2007
  • Ingår i: Springer Proceedings in Physics. - Springer. - 0930-8989. ; 116, s. 583-591
  • Konferensbidrag (refereegranskat)abstract
    • A fluorescence lidar measurement has been performed on the castle Övedskloster in Sweden. A mobile system from the Lund University was placed at ~40 m distance from the sandstone façade. The lidar system, which uses a frequency-tripled Nd:YAG laser with a 355-nm pulsed beam, induces fluorescence in each target point. Areas were studied by using whisk-broom scans. The possibility of detecting biodeteriogens on the surface and characterization of materials was confirmed. The method can be a tool for conservation planning and status control of the architectural heritage where fluorescence light can point out features that are not normally visible under natural illumination.
  •  
3.
  • Grönlund, Rasmus, et al. (författare)
  • Laser-induced fluorescence imaging for studies of cultural heritage - art. no. 66180P
  • 2007
  • Ingår i: O3A: Optics for Arts, Architecture, and Archaeology. - SPIE--The International Society for Optical Engineering. - 0277-786X. - 9780819467607 ; 6618, s. P6180-P6180
  • Konferensbidrag (refereegranskat)abstract
    • Laser-induced fluorescence for remote imaging of historical monuments is an established technique, which in this work has been used in measurement campaigns at the Coliseum and the Baptistery of San Giovanni in Laterano in Rome, Italy. The results presented here are examples that show that biodeteriogens can be monitored and that. materials can be identified. Also, cleaned and soiled areas on the stone can be localized and differences between soiling can be found, which may be useful in the sustainable conservation for mapping and evaluation.
  •  
4.
  • Grönlund, Rasmus (författare)
  • Lidar Techniques for Environmental Monitoring
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • Ljus kan beskrivas som en elektromagnetisk våg och har då en viss våglängd. Färgen på ljuset förändras beroende på våglängden. Av det synliga ljuset har violett ljus den kortaste våglängden och rött ljus den längsta. Det finns även elektromagnetisk strålning utanför det synliga området, från Röntgenstrålning till radiovågor. Det vi kallar det optiska området sträcker sig från ultraviolett strålning, med kortare våglängd än violett ljus, till infraröd strålning, med längre våglängd än rött ljus (även kallat värmestrålning). Om man håller upp en röd glasbit mot en lampa, ser man ett rött ljus. Detta beror på att glasbiten har absorberat det ljus som inte är rött och släpper bara igenom det röda ljuset. På samma sätt absorberar atomer och molekyler i vår omvärld ljus med vissa specifika våglängder. Olika ämnen absorberar ljus vid olika våglängder, de har ett specifikt absorptionsspektrum. När en atom har absorberat ljus blir den exciterad, den har mer energi än nödvändigt. Alla atomer strävar efter att ha så låg energi som möjligt, så de kommer spontant att falla tillbaka till sitt grundtillstånd. Detta kan de göra, t.ex. genom att förlora sin energi till en annan atom i en kollision eller genom att sända ut sin extra energi i form av ljus. Detta ljus kan, på samma sätt som vid absorptionen, bara ha vissa våglängder. Atomer har alltså också ett emissionsspektrum, som består av karakteristiska våglängder. Studien av dessa spektra kallas spektroskopi. Denna avhandling handlar om den spektroskopiska metoden lidar (som är en förkortning av det engelska uttrycket ?light detection and ranging?), även kallat laser-radar. När en kort laserpuls skickas ut i atmosfären kommer ljuset att spridas när det träffar molekyler och partiklar i luften. En liten del av ljuset sprids i bakåtriktningen och kan samlas upp av ett teleskop och detekteras. Eftersom det utsända ljuset är en kort laserpuls kan man veta hur långt bort ljuset varit genom att mäta hur lång tid det tar innan det återvänder. Anta att man skickar ut en laserpuls vid en specifik våglängd där ett visst ämne absorberar. Ljuset kommer då att absorberas om ämnet påträffas. Om man simultant mäter på en närliggande våglängd, som dock inte absorberas, ser man en skillnad i det bakåtspridda ljuset, som enbart beror på att den ena våglängden absorberats. Med denna metod, som kallas differentiell absorptions-lidar kan man få en profil av koncentrationen av det eftersökta ämnet längs med laserns riktning. Genom att svepa laserriktningen över ett område kan man skapa en koncentrationskarta. Detta kan kombineras med mätningar av vindhastigheten i området för att mäta flödet av en förorening från en utspridd källa. I detta arbete har differentiell absorptions-lidar använts för att mäta kvicksilverutsläpp från olika typer av källor. Både kloralkali-fabriker på tre olika platser i Europa och en nedlagd kvicksilvergruva har undersökts. Mätningarna på klor-alkali-fabriker har gjorts inom ett större EU-projekt där effekterna av kvicksilverutsläpp på människor boende nära dessa fabriker undersöktes. De flödesmätningar som gjordes var viktiga indata till spridningsmodeller och behövdes för att få ett mått på hur mycket kvicksilver som släpptes ut. Mätningar av kvicksilverinnehållet i grönsaker och fisk i områdena, samt epidemiologiska mätningar av arbetare och människor som bodde i närheten var också delar av projektet. Om man vill undersöka fasta material kan en annan metod tillämpas. När ett objekt belyses med ett ultraviolett ljus exciteras molekyler i objektet. När de återfaller till sitt grundtillstånd sänder de ut fluorescensljus. Det är denna effekt som gör att en vit skjorta på ett diskotek lyser blåaktigt. Samma effekt används för att försvåra förfalskning av t.ex. sedlar och kreditkort. När dessa belyses med ultraviolett ljus ses en fluorescensbild som är osynlig i vanlig belysning. Genom att belysa objekt med en kraftig ultraviolett laserpuls kan man inducera fluorescens i objektet. Fluorescens-strålningen kan vara olika stark i olika färger, beroende på vilka molekyler objektet innehåller. Genom att analysera fluorescens-spektret kan man då identifiera materialet. Denna teknik kallas laser-inducerad fluorescens, eller, när den används på avstånd, fluorescens-lidar. Metoden har i detta arbete använts för att studera historiska byggnader samt elektriska isolatorer. Det finns ett behov av att undersöka historiska byggnader, både för att monitorera om åtgärder behöver vidtagas samt för att identifiera material och dokumentera byggnaden. Med fluorescens-lidar kan man, genom att svepa laserstrålen över byggnaden och mäta fluorescens-spektret i varje punkt, identifiera biologisk påväxt, områden där ytbehandlingskemikalier använts samt olika typer av material. I vissa fall kan man även se skillnader mellan samma typ av material, vilket t.ex. kan bero på ålder, skador eller förslitningar. Elektriska isolatorer på kraftledningar är ute i väder och vind och om de blir påväxta med alger kan dessa binda vatten vilket kan orsaka elektriskt genomslag. Det finns därför ett behov att kontrollera så att detta inte inträffar, vilket är möjligt med fluorescenslidar. Om laserpulsen som sänds mot ett objekt är tillräckligt intensiv och fokuseras ner till en liten punkt kan man skapa en liten explosion. Detta beror på att man tillför så mycket energi att man bryter sönder materialet och det skapas en liten gnista, innehållande fria atomer och joner från ytan. Eftersom man har tillfört mycket energi kommer dessa atomer och joner att bli exciterade. När atomerna faller tillbaka till sitt grundtillstånd sänder de ut specifika våglängder och därmed kan man analysera vilket ämne som fanns i provet. Metoden kallas ?laser-induced breakdownspectroscopy?, eller gnist-spektroskopi. Genom att sedan svepa laserstrålen över ytan kan man skapa en karta över de ämnen som finns i området. I detta arbete har alltså tre olika typer av spektroskopi på avstånd utförts; dels mätningar av luftföroreningar, med differentiell absorptions-lidar, dels mätningar på byggnader och isolatorer med fluorescens-lidar och dels laser-inducerad gnist-spektroskopi.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy