SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hägg Ulrika) "

Sökning: WFRF:(Hägg Ulrika)

  • Resultat 1-10 av 14
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gan, Li-Ming, 1969-, et al. (författare)
  • A short period of apnoea causes a marked increase in coronary flow velocity: a transthoracic pulsed wave Doppler study.
  • 2005
  • Ingår i: Clinical physiology and functional imaging. - 1475-0961. ; 25:3, s. 148-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronary artery flow velocity during a short period of apnoea was investigated by transthoracic Doppler recording in 10 healthy men, aged 24-52. During breath holding for 29 +/- 6 s the oxygen saturation in the finger, measured by pulse oxymetry, decreased from 97.5 +/- 0.8 to 90.0 +/- 3.2% (P < 0.001). The maximal coronary blood flow velocity in the left anterior descending artery increased by 62% from 0.26 +/- 0.09 to 0.42 +/- 0.10 m s(-1) and the mean diastolic flow velocity by 47% from 0.19 +/- 0.04 to 0.28 +/- 0.08 m s(-1) (P < 0.001). In most subjects the increase of velocity started already after a few seconds of apnoea. Besides theoretical implications the results show that it is very important to be aware of the higher velocity during apnoea in order to avoid misinterpretation when using breath holding during magnetic resonance imaging or Doppler recording of coronary flow.
  •  
2.
  • Gan, Li-Ming, 1969-, et al. (författare)
  • Non-invasive real-time imaging of atherosclerosis in mice using ultrasound biomicroscopy
  • 2007
  • Ingår i: Atherosclerosis. - 0021-9150. ; 190:2, s. 313
  • Tidskriftsartikel (refereegranskat)abstract
    • There are increasing needs to develop imaging techniques to study in vivo vascular morphology and function in various mouse models of atherosclerosis. Using ultrasound biomicroscopy (UBM), we developed and validated a new imaging protocol to follow lesion progression in atherosclerotic mice. ApoE and LDL receptor double knockout mice (DKO) with various degree of atherosclerosis and normal control mice were imaged at the level of the ascending aorta using UBM. Average plaque thickness, as well as plaque area were delineated in the short-axis images, and were subsequently compared with histological measurements. We showed that plaque area at this vascular site was closely correlated to total plaque burden from en face measurement (p<0.0001). UBM-measured plaque thickness and area correlated with indices for histology measures from the same vascular region (p<0.0001 respective p<0.0001). Furthermore, in 16 DKO mice aged from 32 to 35 weeks, UBM showed significantly weekly increases of IMT in the ascending aorta from 0.106+/-0.108 mm at 32 weeks of age to 0.256+/-0.345 mm at 35 weeks of age (p=0.0002). In conclusion, this novel imaging protocol provides us with a non-invasive, accurate and inexpensive way to follow lesion progression in mice in vivo.
  •  
3.
  • Grönros, Julia, 1978-, et al. (författare)
  • Proximal to middle left coronary artery flow velocity ratio, as assessed using color Doppler echocardiography, predicts coronary artery atherosclerosis in mice.
  • 2006
  • Ingår i: Arteriosclerosis, thrombosis, and vascular biology. - 1524-4636. ; 26:5, s. 1126-31
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: We aimed to establish a completely noninvasive technique to assess coronary artery atherosclerosis in living mice using proximal to middle left coronary artery (LCA) velocity ratio as assessed with color Doppler echocardiography (CDE). METHODS AND RESULTS: Three groups of apolipoprotein E/low-density lipoprotein receptor double-knockout (apoE/LDLr dko) mice 10, 40, and 80 weeks of age and 3 additional age-matched groups of C57BL/6 mice were examined under anesthesia. Coronary flow velocity in proximal (Vprox) and middle part (Vmid) of LCA was measured using CDE. A 40-MHz ultrasound biomicroscope (UBM) was used to visualize lumen and outer vessel diameter in the proximal LCA. Flow velocity in the proximal LCA increased significantly with age and remained constant in the middle part in the apoE/LDLr dko mice, whereas velocities at both the sites remained unchanged in C57 mice. CDE-assessed flow velocity ratio (Vprox/Vmid) increased significantly with age in apoE/LDLr dko mice (P=0.0055) and correlated significantly to percentage wall thickness, as assessed by UBM (P=0.0044; r=0.65) and histology (P=0.0002; r=0.78). Wall thickness increased with age in the apoE/LDLr dko mice as measured with UBM (P=0.0093; r=0.49), which was also confirmed with histology (P<0.0001; r=0.73). CONCLUSIONS: CDE and UBM are useful noninvasive tools to quantify mouse coronary artery atherosclerosis in vivo.
  •  
4.
  • Hägg Samuelsson, Ulrika, 1973- (författare)
  • Effects of physical exercise on coronary and peripheral vascular function. An integrative physiological study from rat to man
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • Physical exercise is beneficial for the cardiovascular health. Numerous epidemiological studies reveal that physical activity reduces the risk of cardiovascular related death. Nevertheless, the underlying vessel wall specific physiological and molecular mechanisms still remain incompletely understood. The aim of this thesis was to investigate coronary and peripheral vascular function as a consequence of exercise and a physically active lifestyle. A wheel-cage model for voluntary running in spontaneously hypertensive rats was used to mimic the human exercise situation. Endothelial function in conduit and resistance arteries was investigated using myograph techniques. Vascular stiffness was studied in vivo, using tissue Doppler imaging, and ex vivo, using a perfusion chamber and ultrasound biomicroscopy. High-frequency echocardiography was used to assess cardiac function and coronary flow velocity reserve (CFVR) in the left anterior descending coronary artery. A broad-base gene expression microarray analysis of aortic tissue was performed, and gene expressions of endothelial nitric oxide synthase (eNOS), copper zinc superoxide dismutase (CuZnSOD) and heat shock proteins 60 and 70 (HSP60 and HSP70) were validated with real-time PCR. Young healthy adults were submitted to studies of flow-mediated vasodilation (FMD), intima-media thickness (IMT), arterial wall stiffness index (SI), echocardiographic examination, CFVR measurements and sub-maximal exercise capacity (VO2maxc). We found that CFVR, resistance artery endothelial function and aortic compliance are improved after exercise in rats. Microarray analysis revealed a concerted down-regulation of HSP genes. After training, aortic and cardiac CuZnSOD gene expression was upregulated, while eNOS remained unchanged. In man, VO2maxc was positively correlated to CFVR and negatively correlated to IMT and SI. FMD was increased in subjects with high compared to moderate VO2maxc. Subjects with high CFVR had high ratios between endothelial-dependent and independent vasodilation in the forearm and low SI. We conclude that a physically active life-style is beneficial for coronary and peripheral artery function in young adults. Aerobic exercise is responsible for the exercise-induced cardiovascular effects, which are independent of blood lipids, in a young population. Also, exercise-induced upregulation of antioxidative enzymes might be a key mechanism underlying peripheral and coronary artery function. HSP might play a role in exercise-induced beneficial vascular effects. Finally, the established methodological platform may facilitate translational physiological studies from animal to man.
  •  
5.
  • Hägg Samuelsson, Ulrika, 1973-, et al. (författare)
  • Gene expression profile and aortic vessel distensibility in voluntarily exercised spontaneously hypertensive rats: potential role of heat shock proteins
  • 2005
  • Ingår i: Physiological Genomics. - 1094-8341. ; 11:22:2, s. 319
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical exercise is considered to be beneficial for cardiovascular health. Nevertheless, the underlying specific molecular mechanisms still remain unexplored. In this study, we aimed to investigate the effects of voluntary exercise on vascular mechanical properties and gene regulation patterns in spontaneously hypertensive rats. By using ultrasound biomicroscopy in an ex vivo perfusion chamber, we studied the distensibility of the thoracic aorta. Furthermore, exercise-induced gene regulation was studied in aortae, using microarray analysis and validated with real-time PCR. We found that distensibility was significantly improved in aortas from exercising compared with control rats (P < 0.0001). Exercising rats demonstrated a striking pattern of coordinated downregulation of genes belonging to the heat shock protein family. In conclusion, voluntary exercise leads to improved vessel wall distensibility and reduced gene expression of heat shock protein 60 and 70, which may indicate decreased oxidative stress in the aortic vascular wall.
  •  
6.
  • Hägg Samuelsson, Ulrika, 1973-, et al. (författare)
  • Gene expression profile and aortic vessel distensibility in voluntarily exercised spontaneously hypertensive rats: potential role of heat shock proteins
  • 2005
  • Ingår i: Physiol Genomics. - 1531-22671094-8341. ; 22:3, s. 319
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical exercise is considered to be beneficial for cardiovascular health. Nevertheless, the underlying specific molecular mechanisms still remain unexplored. In this study, we aimed to investigate the effects of voluntary exercise on vascular mechanical properties and gene regulation patterns in spontaneously hypertensive rats. By using ultrasound biomicroscopy in an ex vivo perfusion chamber, we studied the distensibility of the thoracic aorta. Furthermore, exercise-induced gene regulation was studied in aortae, using microarray analysis and validated with real-time PCR. We found that distensibility was significantly improved in aortas from exercising compared with control rats (P < 0.0001). Exercising rats demonstrated a striking pattern of coordinated downregulation of genes belonging to the heat shock protein family. In conclusion, voluntary exercise leads to improved vessel wall distensibility and reduced gene expression of heat shock protein 60 and 70, which may indicate decreased oxidative stress in the aortic vascular wall.
  •  
7.
  • Hägg Samuelsson, Ulrika, 1973-, et al. (författare)
  • Physical exercise capacity is associated with coronary and peripheral vascular function in healthy young adults.
  • 2005
  • Ingår i: American journal of physiology. Heart and circulatory physiology. - 0363-6135. ; 289:4, s. 1627-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Short-term exercise training has been shown to improve cardiovascular function, whereas long-term effects of a physically active lifestyle, on coronary artery function in particular, are still not well studied. We explored possible relationships between physical exercise capacity and coronary and peripheral vascular function in healthy young adults. Twenty-nine healthy young male and female volunteers participated in the study. They underwent 1) basic clinical and echocardiographic characterization, 2) coronary flow velocity reserve (CFVR) measurement of the left anterior descending coronary artery (LAD), 3) common carotid artery (CCA) intima-media thickness (IMT) measurement, 4) assessment of CCA stiffness index (SI), 5) forearm flow-mediated vasodilation (FMD), and 6) submaximal exercise test. The calculated weight-adjusted maximal oxygen uptake capacity (Vo(2 max)(c)) was positively correlated to LAD CFVR and inversely correlated to IMT and SI. Also, subjects with high compared with moderate exercise capacity had higher FMD. In addition, subjects with LAD CFVR in the upper median had greater ratios between endothelium-dependent and -independent vasodilation in the forearm and lower SI in CCA. High exercise capacity due to a physically active lifestyle is associated with high coronary and peripheral artery function, indicating an early protective role of physical exercise for cardiovascular health.
  •  
8.
  • Hägg Samuelsson, Ulrika, 1973-, et al. (författare)
  • Voluntary physical exercise and coronary flow velocity reserve: a transthoracic colour Doppler echocardiography study in spontaneously hypertensive rats
  • 2005
  • Ingår i: Clin Sci (Lond). - 0143-5221. ; 109:3, s. 325-34
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, we have developed and demonstrated a coronary artery imaging protocol in rats using transthoracic high-frequency CDE (colour Doppler echocardiography) to investigate the potential direct effects of exercise on CFVR (coronary flow velocity reserve). SHR (spontaneously hypertensive rats) performed voluntary exercise for 6 weeks. Rats were then submitted to ultrasonographic examination and CFVR measurements. The LAD (left anterior descending coronary artery) was visualized using transthoracic CDE in a modified parasternal long-axis view. Doppler measurement was made in mid-LAD during baseline and adenosine-induced hyperaemic condition. Gene and protein expression in cardiac tissue were studied using real-time PCR and immunohistochemistry. Adenosine infusion significantly (P<0.001, as determined by ANOVA) decreased HR, without affecting blood pressure in anaesthetized SHR. A significantly greater adenosine dose-dependent response was seen in exercised rats compared with controls (P=0.02, as determined by ANOVA). The baseline flow velocity in mid-LAD was 0.33+/-0.06 and 0.41+/-0.14 m/s in the exercised and control animals respectively (P value was not significant). The maximum adenosine-induced response was reached at a dose of 140 microg.kg-1 of body weight.min-1, and CFVR averaged at 2.6+/-0.53 and 1.5+/-0.24 in exercised and control animals respectively (P<0.01). Gene expression of CuZnSOD was up-regulated by 21% in exercised animals compared with controls (1.1+/-0.16 compared with 0.89+/-0.09; P<0.01), whereas eNOS expression was unchanged. In conclusion, CFVR in rats can be non-invasively assessed using CDE with high feasibility. Physical exercise is associated with improved CFVR and antioxidative capacity in SHR.
  •  
9.
  • Hägg Samuelsson, Ulrika, 1973-, et al. (författare)
  • Voluntary physical exercise-induced vascular effects in spontaneously hypertensive rats
  • 2004
  • Ingår i: Clin Sci (Lond). - 0143-5221. ; 107:6, s. 571-81
  • Tidskriftsartikel (refereegranskat)abstract
    • Forced training has been shown to have beneficial vascular effects in various animal exercise models. In the present study, we explored possible physiological and molecular effects of voluntary physical exercise on various vascular beds. SHR (spontaneously hypertensive rats) performed voluntary exercise for 5 weeks in a computerized wheel cage facility. Ex vivo myograph studies revealed an increased sensitivity of the ACh (acetylcholine)-mediated vasodilation in resistance arteries of the exercised animals (ED50=15.0+/-3.5 nmol/l) compared with the controls (ED50=37.0+/-8.8 nmol/l; P=0.05). The exercise/control difference was abolished after scavenging reactive oxygen radicals. In conduit arteries, ACh induced a similar vasodilatory response in both groups. The in vivo aortic wall stiffness, assessed by means of Doppler tissue echography, was significantly lower in the exercising animals than in controls. This was demonstrated by significantly increased peak systolic aortic wall velocity (P=0.03) and the velocity time integral (P=0.01) in exercising animals compared with controls. The relative gene expression of eNOS (endothelial nitric oxide synthase) was similar in both groups of animals, whereas Cu/ZnSOD (copper/zinc superoxide dismutase) gene expression was significantly increased (+111%; P=0.0007) in the exercising animal compared with controls. In conclusion, voluntary physical exercise differentially improves vascular function in various vascular beds. Increased vascular compliance and antioxidative capacity may contribute to the atheroprotective effects associated with physical exercise in conduit vessels.
  •  
10.
  • Johansson, Maria E, 1977-, et al. (författare)
  • Haemodynamically significant plaque formation and regional endothelial dysfunction in cholesterol-fed ApoE-/- mice
  • 2005
  • Ingår i: Clinical Science. - 0143-5221. ; 108:6, s. 531-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Flow-mediated vasodilation is suggested as one of the mechanisms involved in arterial expansive remodelling, which is thought to be a defence mechanism in atherogenesis. In the present study, we tested the hypothesis that lumen obstructive plaque formation is associated with failure of NO (nitric oxide)-dependent vasodilation in conduit vessels. Cardiac function and aortic root flow velocities were assessed using high-resolution echocardiography and two-dimensional-guided pulsed Doppler in ApoE(-/-) (apolipoprotein E-deficient) mice fed a standard or high-cholesterol diet. Endothelial function in the proximal and mid-descending aortic regions was studied using a myograph technique. Flow velocity at the aortic root of cholesterol-fed ApoE(-/-) mice was significantly increased as a result of lumen narrowing, detected via histological analysis. NO-dependent vasodilatory responses were selectively impaired in the atherosclerosis-prone vascular regions in cholesterol-fed ApoE(-/-) mice. In conclusion, consumption of a high-cholesterol diet results in lumen obstructive plaque formation in ApoE(-/-) mice, which significantly alters aortic root haemodynamics. This phenomenon is associated with impaired NO-dependent vasodilation in vessel segments known to be prone to atherosclerosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy