SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Höpfner M.) ;pers:(Stiller G.P.)"

Sökning: WFRF:(Höpfner M.) > Stiller G.P.

  • Resultat 1-10 av 12
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kerzenmacher, T., et al. (författare)
  • Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE)
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 8:19, s. 5801
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertical profiles of NO2 and NO have been obtained from solar occultation measurements by the Atmospheric Chemistry Experiment (ACE), using an infrared Fourier Transform Spectrometer (ACE-FTS) and (for NO2) an ultraviolet-visible-near-infrared spectrometer, MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation). In this paper, the quality of the ACE-FTS version 2.2 NO2 and NO and the MAESTRO version 1.2 NO2 data are assessed using other solar occultation measurements (HALOE, SAGE II, SAGE III, POAM III, SCIAMACHY), stellar occultation measurements (GOMOS), limb measurements (MIPAS, OSIRIS), nadir measurements (SCIAMACHY), balloon-borne measurements (SPIRALE, SAOZ) and ground-based measurements (UV-VIS, FTIR). Time differences between the comparison measurements were reduced using either a tight coincidence criterion, or where possible, chemical box models. ACE-FTS NO2 and NO and the MAESTRO NO2 are generally consistent with the correlative data. The ACE-FTS and MAESTRO NO2 volume mixing ratio (VMR) profiles agree with the profiles from other satellite data sets to within about 20% between 25 and 40 km, with the exception of MIPAS ESA (for ACE-FTS) and SAGE II (for ACE-FTS (sunrise) and MAESTRO) and suggest a negative bias between 23 and 40 km of about 10%. MAESTRO reports larger VMR values than the ACE-FTS. In comparisons with HALOE, ACE-FTS NO VMRs typically (on average) agree to ±8% from 22 to 64 km and to +10% from 93 to 105 km, with maxima of 21% and 36%, respectively. Partial column comparisons for NO2 show that there is quite good agreement between the ACE instruments and the FTIRs, with a mean difference of +7.3% for ACE-FTS and +12.8% for MAESTRO.
2.
  • Wang, D.Y., et al. (författare)
  • Validation of nitric acid retrieved by the IMK-IAA processor from MIPAS/ENVISAT measurements
  • 2007
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 7, s. 721-738
  • Tidskriftsartikel (refereegranskat)abstract
    • The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVISAT satellite provides profiles of temperature and various trace-gases from limb-viewing mid-infrared emission measurements. The stratospheric nitric acid (HNO3) from September 2002 to March 2004 was retrieved from the MIPAS observations using the science-oriented data processor developed at the Institut für Meteorologie und Klimaforschung (IMK), which is complemented by the component of non-local thermodynamic equilibrium (non-LTE) treatment from the Instituto de Astrofísica de Andalucía (IAA). The IMK-IAA research product, different from the ESA operational product, is validated in this paper by comparison with a number of reference data sets. Individual HNO3 profiles of the IMK-IAA MIPAS show good agreement with those of the balloon-borne version of MIPAS (MIPAS-B) and the infrared spectrometer MkIV, with small differences of less than 0.5 ppbv throughout the entire altitude range up to about 38 km, and below 0.2 ppbv above 30 km. However, the degree of consistency is largely affected by their temporal and spatial coincidence, and differences of 1 to 2 ppbv may be observed between 22 and 26 km at high latitudes near the vortex boundary, due to large horizontal inhomogeneity of HNO3. Statistical comparisons of MIPAS IMK-IAA HNO3 VMRs with respect to those of satellite measurements of Odin/SMR, ILAS-II, ACE-FTS, as well as the MIPAS ESA product show good consistency. The mean differences are generally ±0.5 ppbv and standard deviations of the differences are of 0.5 to 1.5 ppbv. The maximum differences are 2.0 ppbv around 20 to 25 km. This gives confidence in the general reliability of MIPAS HNO3 VMR data and the other three satellite data sets.
3.
  • Hopfner, M., et al. (författare)
  • Validation of MIPAS ClONO2 measurements
  • 2007
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 7, s. 257-281
  • Tidskriftsartikel (refereegranskat)abstract
    • Altitude profiles of ClONO2 retrieved with the IMK (Institut für Meteorologie und Klimaforschung) science-oriented data processor from MIPAS/Envisat (Michelson Interferometer for Passive Atmospheric Sounding on Envisat) mid-infrared limb emission measurements between July 2002 and March 2004 have been validated by comparison with balloon-borne (Mark IV, FIRS2, MIPAS-B), airborne (MIPAS-STR), ground-based (Spitsbergen, Thule, Kiruna, Harestua, Jungfraujoch, Izaña, Wollongong, Lauder), and spaceborne (ACE-FTS) observations. With few exceptions we found very good agreement between these instruments and MIPAS with no evidence for any bias in most cases and altitude regions. For balloon-borne measurements typical absolute mean differences are below 0.05 ppbv over the whole altitude range from 10 to 39 km. In case of ACE-FTS observations mean differences are below 0.03 ppbv for observations below 26 km. Above this altitude the comparison with ACE-FTS is affected by the photochemically induced diurnal variation of ClONO2. Correction for this by use of a chemical transport model led to an overcompensation of the photochemical effect by up to 0.1 ppbv at altitudes of 30–35 km in case of MIPAS-ACE-FTS comparisons while for the balloon-borne observations no such inconsistency has been detected. The comparison of MIPAS derived total column amounts with ground-based observations revealed no significant bias in the MIPAS data. Mean differences between MIPAS and FTIR column abundances are 0.11±0.12×1014 cm−2 (1.0±1.1%) and −0.09±0.19×1014 cm−2 (−0.8±1.7%), depending on the coincidence criterion applied. χ2 tests have been performed to assess the combined precision estimates of MIPAS and the related instruments. When no exact coincidences were available as in case of MIPAS – FTIR or MIPAS – ACE-FTS comparisons it has been necessary to take into consideration a coincidence error term to account for χ2 deviations. From the resulting χ2 profiles there is no evidence for a systematic over/underestimation of the MIPAS random error analysis.
  •  
4.
  • Strong, K., et al. (författare)
  • Validation of ACE-FTS N2O measurements
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 8, s. 4759-4786
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, was launched on 12 August 2003, carrying two instruments that measure vertical profiles of atmospheric constituents using the solar occultation technique. One of these instruments, the ACE Fourier Transform Spectrometer (ACE-FTS), is measuring volume mixing ratio (VMR) profiles of nitrous oxide (N2O) from the upper troposphere to the lower mesosphere at a vertical resolution of about 3–4 km. In this study, the quality of the ACE-FTS version 2.2 N2O data is assessed through comparisons with coincident measurements made by other satellite, balloon-borne, aircraft, and ground-based instruments. These consist of vertical profile comparisons with the SMR, MLS, and MIPAS satellite instruments, multiple aircraft flights of ASUR, and single balloon flights of SPIRALE and FIRS-2, and partial column comparisons with a network of ground-based Fourier Transform InfraRed spectrometers (FTIRs). Between 6 and 30 km, the mean absolute differences for the satellite comparisons lie between −42 ppbv and +17 ppbv, with most within ±20 ppbv. This corresponds to relative deviations from the mean that are within ±15%, except for comparisons with MIPAS near 30 km, for which they are as large as 22.5%. Between 18 and 30 km, the mean absolute differences for the satellite comparisons are generally within ±10 ppbv. From 30 to 60 km, the mean absolute differences are within ±4 ppbv, and are mostly between −2 and +1 ppbv. Given the small N2O VMR in this region, the relative deviations from the mean are therefore large at these altitudes, with most suggesting a negative bias in the ACE-FTS data between 30 and 50 km. In the comparisons with the FTIRs, the mean relative differences between the ACE-FTS and FTIR partial columns (which cover a mean altitude range of 14 to 27 km) are within ±5.6% for eleven of the twelve contributing stations. This mean relative difference is negative at ten stations, suggesting a small negative bias in the ACE-FTS partial columns over the altitude regions compared. Excellent correlation (R=0.964) is observed between the ACE-FTS and FTIR partial columns, with a slope of 1.01 and an intercept of −0.20 on the line fitted to the data.
5.
  • Chauhan, Swarup, et al. (författare)
  • MIPAS reduced spectral resolution UTLS-1 mode measurements of temperature, O3, HNO3, N2O, H2O and relative humidity over ice: retrievals and comparison to MLS
  • 2009
  • Ingår i: Atmospheric Measurement Techniques. - Copernicus GmbH. - 1867-1381. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • During several periods since 2005 the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat has performed observations dedicated to the region of the upper troposphere/lower stratosphere (UTLS). For the duration of November/December 2005 global distributions of temperature and several trace gases from MIPAS UTLS-1 mode measurements have been retrieved using the IMK/IAA (Institut für Meteorologie und Klimaforschung/Instituto de Astrofísica de Andalucía) scientific processor. In the UTLS region a vertical resolution of 3 km for temperaure, 3 to 4 km for H2O, 2.5 to 3 km for O3, 3.5 km for HNO3 and 3.5 to 2.5 km for N2O has been achieved. The retrieved temperature, H2O, O3, HNO3, N2O, and relative humidity over ice are intercompared with the Microwave Limb Sounder (MLS/Aura) v2.2 data in the pressure range 316 to 0.68 hPa, 316 to 0.68 hPa, 215 to 0.68 hPa, 215 to 3.16 hPa, 100 to 1 hPa and 316 to 10 hPa, respectively. In general, MIPAS and MLS temperatures are biased within ±4 K over the whole pressure and latitude range. Systematic, latitude-independent differences of -2 to -4 K (MIPAS-MLS) at 121 hPa are explained by previously observed biases in the MLS v2.2 temperature retrievals. Temperature differences of -4 K up to 12 K above 10.0 hPa are present both in MIPAS and MLS with respect to ECMWF (European Centre for Medium-Range Weather Forecasts) and are likely due to deficiencies of the ECMWF analysis data. MIPAS and MLS stratospheric volume mixing ratios (vmr) of H2O are biased within ±1 ppmv, with indication of oscillations between 146 and 26 hPa in the MLS dataset. Tropical upper tropospheric values of relative humidity over ice measured by the two instruments differ by ±20% in the pressure range ~146 to 68 hPa. These differences are mainly caused by the MLS temperature biases. Ozone mixing ratios agree within 0.5 ppmv (10 to 20%) between 68 and 14 hPa. At pressures smaller than 10 hPa, MIPAS O3 vmr are higher than MLS by an average of 0.5 ppmv (10%). General agreement between MIPAS and MLS HNO3 is within the range of -1.0 (-10%) to 1.0 ppbv (20%). MIPAS HNO3 is 1.0 ppbv (10%) higher compared to MLS between 46 hPa and 10 hPa over the Northern Hemisphere. Over the tropics at 31.6 hPa MLS shows a low bias of more than 1 ppbv (>50%). In general, MIPAS and MLS N2O vmr agree within 20 to 40 ppbv (20 to 40%). Differences in the range between 100 to 21 hPa are attributed to a known 20% positive bias in MIPAS N2O data.
  •  
6.
  • Wang, D.Y., et al. (författare)
  • Comparisons of MIPAS/ENVISAT ozone profiles with SMR/ODIN and HALOE/UARS observations
  • 2005
  • Ingår i: Advances in Space Research. - 0273-1177. ; 36:5, s. 927-931
  • Tidskriftsartikel (refereegranskat)abstract
    • Ozone volume mixing ratio (VMR) profiles are measured by the Michelson Interferometer for passive atmospheric sounding (MIPAS) on ENVISAT. The data sets produced by the science data processor at Institut fur Meteorologic und Klimaforschung (IMK), Germany are compared with those obtained by halogen occultation experiment (HALOE) on UARS and by sub-millimetre radiometer (SMR) on ODIN. For the stratospheric measurements taken during September/October 2002, the three instruments show reasonable agreement, with global mean differences within 0.1-0.3 ppmv. The typical zonal mean differences are of 0.4 ppmv for HALOE and 0.6 ppmv for SMR (4-6%) in the ozone VMR peak region at 25-30 km near the equator, though larger differences of 0.8-1 ppmv (8-10%) are also observed in a small latitude-altitude region in the tropic. A positive bias of about 0.2-0.4 ppmv in the MIPAS data in the 35-40 km region has also been found. Further studies are under way to explain these differences.
  •  
7.
  • Glatthor, N., et al. (författare)
  • Global peroxyacetyl nitrate (PAN) retrieval in the upper troposphere from limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)
  • 2007
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus GmbH. - 1680-7316. ; 7:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We use limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVIronmental SATellite (ENVISAT) to derive the first global distribution of peroxyacetyl nitrate (PAN) in the upper troposphere. PAN is generated in tropospheric air masses polluted by fuel combustion or biomass burning and acts as a reservoir and carrier of NOx in the cold free troposphere. PAN exhibits continuum-like broadband structures in the mid-infrared region and was retrieved in a contiguous analysis window covering the wavenumber region 775–800 cm−1. The interfering species CCl4, HCFC-22, H2O, ClONO2, CH3CCl3 and C2H2 were fitted along with PAN, whereas pre-fitted profiles were used to model the contribution of other contaminants like ozone. Sensitivity tests consisting in retrieval without consideration of PAN demonstrated the existence of PAN signatures in MIPAS spectra obtained in polluted air masses. The analysed dataset consists of 10 days between 4 October and 1 December 2003. Thisperiod covers the end of the biomass burning season in South America and South and East Africa, in which generally large amounts of pollutants are produced and distributed over wide areas of the southern hemispheric free troposphere. Indeed, elevated PAN amounts of 200–700 pptv were measured in a large plume extending from Brasil over the Southern Atlantic, Central and South Africa, the South Indian Ocean as far as Australia at altitudes between 8 and 16 km. Enhanced PAN values were also found in a much more restricted area between northern subtropical Africa and India. The most significant northern midlatitude PAN signal was detected in an area at 8 km altitude extending from China into the Chinese Sea. The average mid and high latitude PAN amounts found at 8 km were around 125 pptv in the northern, but only between 50 and 75 pptv in the southern hemisphere. The PAN distribution found in the southern hemispheric tropics and subtropics is highly correlated with the jointly fitted acetylene (C2H2), which is another pollutant produced by biomass burning, and agrees reasonably well with the CO plume detected during end of September 2003 at the 275 hPa level (~10 km) by the Measurement of Pollution in the Troposphere (MOPITT) instrument on the Terra satellite. Similar southern hemispheric PAN amounts were also observed by previous airborne measurements performed in September/October 1992 and 1996 above the South Atlantic and the South Pacific, respectively.
  •  
8.
  • Glatthor, N., et al. (författare)
  • Retrieval of stratospheric ozone profiles from MIPAS/ENVISAT limb emission spectra a sensitivity study
  • 2006
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus GmbH. - 1680-7316. ; 6:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the dependence of ozone volume mixing ratio profiles, retrieved from limb emission infrared spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), on different retrieval setups such as the treatment of the background continuum, cloud filtering, spectral regions used for analysis and a series of further more technical parameter choices. The purpose of this investigation is to better understand the error sources of the ozone retrieval, to optimize the current retrieval setup and to document changes in the data versions. It was shown that the cloud clearing technique used so far (cloud index 1.8) does not reliably exclude all cloud-contaminated spectra from analysis. Through analysis of spectra calculated for cloudy atmospheres we found that the cloud index should be increased to a value of 3.0 or higher. Further, it was found that assignment of a common background continuum to adjacent microwindows within 5 cm−1 is advantageous, because it sufficiently represents the continuum emission by aerosols, clouds and gases as reported in the literature, and is computationally more efficient. For ozone retrieval we use ozone lines from MIPAS band A (685–970 cm−1) and band AB (1020–1170 cm−1) as well. Therefore we checked ozone retrievals with lines from bands A or AB only for a systematic difference. Such a difference was indeed found and could, to a major part, be attributed to the spectroscopic data used in these two bands, and to a minor part to neglection of modelling of non-local thermodynamic (non-LTE) emissions. Another potential explanation, a bias in the radiance calibration of level-1B spectra of bands A and AB, could largely be ruled out by correlation analysis and inspection of broadband spectra. Further upgrades in the ozone retrieval consist of application of an all-zero a-priori profile and a weaker regularization. Finally, the ozone distribution obtained with the new retrieval setup (data versions V3o_O3_7) was compared to the data version used before (V2_O3_2). Differences are smaller than $\pm$0.4 ppmv in the altitude region 15–50 km. Further, differences to ozone measured by the HALogen Occultation Experiment (HALOE) on the Upper Atmospheric Research Satellite (UARS) are partly reduced with the new MIPAS data version.
  •  
9.
  • Lossow, Stefan, 1977-, et al. (författare)
  • Comparison of HDO measurements from Envisat/MIPAS with observations by Odin/SMR and SCISAT/ACE-FTS
  • 2011
  • Ingår i: Atmospheric Measurement Techniques. - 1867-1381. ; 4:9, s. 1855-1874
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of thermal emission in the mid-infrared by Envisat/MIPAS allow the retrieval of HDO information roughly in the altitude range between 10 km and 50 km. From June 2002 to March 2004 MIPAS performed measurements in the full spectral resolution mode. To assess the quality of the HDO data set obtained during that period comparisons with measurements by Odin/SMR and SCISAT/ACE-FTS were performed. Comparisons were made on profile-to-profile basis as well as using seasonal and monthly averages. All in all the comparisons yield favourable results. The largest deviations between MIPAS and ACE-FTS are observed below 15 km, where relative deviations can occasionally exceed 100%. Despite these deviations in the absolute amount of HDO the latitudinal structures observed by both instruments are consistent in this altitude range. Between 15 km and 20 km there is less good agreement, in particular in the Antarctic during winter and spring. Also in the tropics some deviations are found. Above 20 km there is a high consistency in the structures observed by all three instruments. MIPAS and ACE-FTS typically agree within 10%, with MIPAS mostly showing higher abundances than ACE-FTS. Both data sets show considerably more HDO than SMR. This bias can be explained basically by uncertainties in spectroscopic parameters. Above 40 km, where the MIPAS HDO retrieval reaches its limits, still good agreement with the structures observed by SMR is found for most seasons. This puts some confidence in the MIPAS data at these altitudes.
10.
  • Stiller, G.P., et al. (författare)
  • Global distribution of mean age of stratospheric air from MIPAS SF6 measurements
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus GmbH. - 1680-7316. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Global distributions of profiles of sulphur hexafluoride (SF6) have been retrieved from limb emission spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat covering the period September 2002 to March 2004. Individual SF6 profiles have a precision of 0.5 pptv below 25 km altitude and a vertical resolution of 4-6 km up to 35 km altitude. These data have been validated versus in situ observations obtained during balloon flights of a cryogenic whole-air sampler. For the tropical troposphere a trend of 0.230±0.008 pptv/yr has been derived from the MIPAS data, which is in excellent agreement with the trend from ground-based flask and in situ measurements from the National Oceanic and Atmospheric Administration Earth System Research Laboratory, Global Monitoring Division. For the data set currently available, based on at least three days of data per month, monthly 5° latitude mean values have a 1σ standard error of 1%. From the global SF6 distributions, global daily andmonthly distributions of the apparent mean age of air are inferred by application of the tropical tropospheric trend derived from MIPAS data. The inferred mean ages are provided for the full globe up to 90° N/S, and have a 1σ standard error of 0.25 yr. They range between 0 (near the tropical tropopause) and 7 years (except for situations of mesospheric intrusions) and agree well with earlier observations. The seasonal variation of the mean age of stratospheric air indicates episodes of severe intrusion of mesospheric air during each Northern and Southern polar winter observed, long-lasting remnants of old, subsided polar winter air over the spring and summer poles, and a rather short period of mixing with midlatitude air and/or upward transport during fall in October/November (NH) and April/May (SH), respectively, with small latitudinal gradients, immediately before the new polar vortex starts to form. The mean age distributions further confirm that SF6 is destroyed in the mesosphere to a considerable degree. Model calculations with the Karlsruhe simulation model of the middle atmosphere (KASIMA) chemical transport model agree well with observed global distributions of the mean age only if the SF6 sink reactions in the mesosphere are included in the model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy