SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hopewell Jemma C.) srt2:(2015)"

Sökning: WFRF:(Hopewell Jemma C.) > (2015)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nikpay, Majid, et al. (författare)
  • A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
  • 2015
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 47:10, s. 1121-1121
  • Tidskriftsartikel (refereegranskat)abstract
    • Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association study (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of similar to 185,000 CAD cases and controls, interrogating 6.7 million common (minor allele frequency (MAF) > 0.05) and 2.7 million low-frequency (0.005 < MAF < 0.05) variants. In addition to confirming most known CAD-associated loci, we identified ten new loci (eight additive and two recessive) that contain candidate causal genes newly implicating biological processes in vessel walls. We observed intralocus allelic heterogeneity but little evidence of low-frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD, showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect size.
  •  
2.
  • Freitag, Daniel F., et al. (författare)
  • Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis
  • 2015
  • Ingår i: The Lancet Diabetes & Endocrinology. - Elsevier. - 2213-8595. ; 3:4, s. 243-253
  • Tidskriftsartikel (refereegranskat)abstract
    • Background To investigate potential cardiovascular and other effects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of inflammation. Methods We created a genetic score combining the effects of alleles of two common variants (rs6743376 and rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous inhibitor of both IL-1 alpha and IL-1 beta); both alleles increase soluble IL-1Ra protein concentration. We compared effects on inflammation biomarkers of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has previously been studied in randomised trials of rheumatoid arthritis and other inflammatory disorders. In primary analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type 2 diabetes, coronary heart disease, ischaemic stroke, and abdominal aortic aneurysm; 453 411 total participants). In exploratory analyses, we studied the relation of the score to many disease traits and to 24 other disorders of proposed relevance to IL-1 signalling (746 171 total participants). Findings For each IL1RN minor allele inherited, serum concentrations of IL-1Ra increased by 0.22 SD (95% CI 0.18-0.25; 12.5%; p=9.3 x 10(-33)), concentrations of interleukin 6 decreased by 0.02 SD (-0.04 to -0.01; -1,7%; p=3.5 x 10(-3)), and concentrations of C-reactive protein decreased by 0.03 SD (-0.04 to -0.02; -3.4%; p=7.7 x 10(-14)). We noted the effects of the genetic score on these inflammation biomarkers to be directionally concordant with those of anakinra. The allele count of the genetic score had roughly log-linear, dose-dependent associations with both IL-1Ra concentration and risk of coronary heart disease. For people who carried four IL-1Ra-raising alleles, the odds ratio for coronary heart disease was 1.15 (1.08-1.22; p=1.8 x 10(-6)) compared with people who carried no IL-1Ra-raising alleles; the per-allele odds ratio for coronary heart disease was 1.03 (1.02-1.04; p=3.9 x 10(-10)). Perallele odds ratios were 0.97 (0.95-0.99; p=9.9 x 10(-4)) for rheumatoid arthritis, 0.99 (0.97-1.01; p=0.47) for type 2 diabetes, 1.00 (0.98-1.02; p=0.92) for ischaemic stroke, and 1.08 (1.04-1.12; p=1.8 x 10(-5)) for abdominal aortic aneurysm. In exploratory analyses, we observed per-allele increases in concentrations of proatherogenic lipids, including LDL-cholesterol, but no clear evidence of association for blood pressure, glycaemic traits, or any of the 24 other disorders studied. Modelling suggested that the observed increase in LDL-cholesterol could account for about a third of the association observed between the genetic score and increased coronary risk. Interpretation Human genetic data suggest that long-term dual IL-1 alpha/beta inhibition could increase cardiovascular risk and, conversely, reduce the risk of development of rheumatoid arthritis. The cardiovascular risk might, in part, be mediated through an increase in proatherogenic lipid concentrations. Copyright (C) The Interleukin 1 Genetics Consortium. Open Access article distributed under the terms of CC-BY-NC-ND.
3.
  • Kato, Norihiro, et al. (författare)
  • Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
  • 2015
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:11, s. 1282-1293
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (<em>P</em> = 3.9 × 10<sup>−11</sup> to 5.0 × 10<sup>−21</sup>). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (<em>IGFBP3</em>, <em>KCNK3</em>, <em>PDE3A</em> and <em>PRDM6</em>) and renal (<em>ARHGAP24</em>, <em>OSR1</em>, <em>SLC22A7</em> and <em>TBX2</em>) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (<em>P</em> = 0.04 to 8.6 × 10<sup>−6</sup>). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.</p>
  •  
4.
  • Kato, Norihiro, et al. (författare)
  • Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation.
  • 2015
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 47:11, s. 93-1282
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10(-11) to 5.0 × 10(-21)). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10(-6)). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy