SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kota Hanumantha Rao) srt2:(2010-2013);srt2:(2012)"

Sökning: WFRF:(Kota Hanumantha Rao) > (2010-2013) > (2012)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdel-Khalek, N.A., et al. (författare)
  • Effect of starch type on selectivity of cationic flotation of iron ore
  • 2012
  • Ingår i: Transactions of the Institution of Mining and Metallurgy Section C - Mineral Processing and Extractive Metallurgy. - 0371-9553 .- 1743-2855. ; 121:2, s. 98-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Cationic flotation is one of the most widely accepted technologies for upgrading siliceous iron ore using polysaccharides (mainly starches) as depressing agents for iron bearing minerals while floating silica with amines. In this paper, a group of starches are investigated as depressants for haematite. These starches are wheat, corn, rice, potato and dextrin. The role of starch type on the selectivity of the separation process has been studied through zeta potential, adsorption measurements as well as flotation tests. The effects of type of starch and pH of the medium have been studied. The results indicate that the selectivity of the separation process is strongly affected by the type of starch used, where better results are obtained with corn starch or wheat starch in comparison to the other types. Fourier transform infrared spectroscopy measurements indicated that the interaction between starches and haematite surface is intermolecular interaction
  •  
2.
  • Ikumapayi, Fatai, et al. (författare)
  • Recycling of process water in sulphide flotation : effect of calcium and sulphate ions on flotation of galena
  • 2012
  • Ingår i: Minerals Engineering. - 0892-6875 .- 1872-9444. ; 39, s. 77-88
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of major components of calcium and sulphate species present in recycled process water on galena flotation has been investigated through Hallimond flotation, zeta-potential, diffuse reflectance FTIR spectroscopy and XPS measurements using pure galena mineral. The significance of process water species in flotation has been understood using deionised water, process water and simulated tap water containing equivalent calcium and sulphate ions concentration as in process water.Hallimond flotation indicated marginally lower recoveries of galena in the presence of calcium and sulphate ions using potassium amyl xanthate as collector. Zeta-potential shows the adsorption of calcium ions whereby the potential are seen to increase while sulphate ions have no significant effect. FTIR and XPS studies revealed surface calcium carbonate and/or calcium sulphate species in process water which affected xanthate adsorption. Presence of surface oxidised species such as sulfoxy, hydroxyl species on galena at pH 10.5 in deionised and process water was also revealed.
  •  
3.
  • Ikumapayi, Fatai, et al. (författare)
  • Recycling process water in complex sulphide ore flotation
  • 2012
  • Ingår i: XXVI International Mineral Processing Congress (IMPC) 2012. - New Dehli : The Indian Institute of Metals. - 9788190171434 ; , s. 4411-4425
  • Konferensbidrag (refereegranskat)abstract
    • An approach to environmental sustainability and improved process economy, in sulphide minerals production is recycling of process water in flotation of complex sulphide ores, although the chemistry of process water may be a critical issue to flotation efficiency. The influence of major components of calcium and sulphate ions in process water on xanthate collector adsorption and flotation response using pure chalcopyrite, galena and sphalerite minerals were investigated by Hallimond flotation, zeta-potential measurement, FTIR and XPS spectroscopy studies, while bench scale flotation tests were also carried out using complex sulphide ores. The impact of the species in flotation was comprehended using deionised water, tap water, process water and simulated water containing equivalent amount of calcium and sulphate species in process water. Hallimond flotation results showed a decrease of chalcopyrite and galena recovery in process water and also in the presence of calcium and sulphate ions in both deionised and process waters, whereas sphalerite does not respond to flotation. The adsorption of calcium and metal ions but not sulphate ions on the minerals is evidenced by zeta-potential data. FTIR and XPS studies revealed the presence of surface oxidized sulfoxy species and surface calcium carbonates on chalcopyrite in the presence of process water and water containing calcium ions, surface oxidized sulfoxy and carbonate species on galena in the presence of deionised water, process water and water containing calcium and sulphate ions, all at flotation pH 10.5, and these surface species influenced xanthate adsorption. The presence of surface oxidized sulfoxy and carbonate species at the sphalerite flotation pH 11.5 were seen in the presence of deionised water, process water and water containing calcium and sulphate ions, but the surface species does not influence xanthate adsorption. Bench scale flotation using two different complex sulphide ores showed that chalcopyrite, galena and sphalerite recoveries are better in process water than tap water. The studies showed that the process water can be recycled in flotation with no detrimental effect on grade and recovery of sulphide minerals.
  •  
4.
  •  
5.
  • Ikumapayi, Fatai, et al. (författare)
  • Recycling process water in sulfide flotation : Part B: Effect of H2O2 and process water components on sphalerite flotation from complex sulfide
  • 2012
  • Ingår i: Minerals & metallurgical processing. - 0747-9182. ; 29:4, s. 192-198
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogen peroxide production was measured during the grinding of a complex sulfide ore, and its oxidizing effect on solid surfaces was investigated using Fourier transform infrared spectroscopy (FTIR) with diffuse reflectance attachment measurement. In turn, an attempt was made to correlate the formation of hydrogen peroxide, surface oxidation and sphalerite flotation. Additionally, in order to predict and minimize detrimental production problems due to the recycling of process water in sulfide ore processing, the effects of major components of calcium and sulfate species present in recycled process water and the effect of temperature on sphalerite flotation were investigated through bench-scale flotation tests using complex sulfide ores. The significance of process water species in flotation was studied using tap water, process water and simulated water containing calcium and sulfate ions. Formation of hydrogen peroxide was revealed during the grinding of the complex sulfide ore, and its formation was counteracted by diethylenetriamine (DETA). The FTIR spectrum of the pulp solid fraction showed varying degrees of oxidized surface species, which are related to the concentration of H2O2 analyzed in pulp liquid. Bench-scale flotation using two different complex sulfide ores showed that sphalerite recovery is better in process water than in tap water. Flotation results also indicated a varied recovery of sphalerite at different temperatures in either tap water or process water
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy