Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsson Lars) ;pers:(Kristiansson Erik 1978);lar1:(cth)"

Sökning: WFRF:(Larsson Lars) > Kristiansson Erik 1978 > Chalmers tekniska högskola

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
  • Asker, Noomi, 1968-, et al. (författare)
  • Hepatic transcriptome profiling indicates differential mRNA expression of apoptosis and immune related genes in eelpout (Zoarces viviparus) caught at Göteborg harbor, Sweden
  • 2013
  • Ingår i: Aquatic Toxicology. - 0166-445X. ; 130-131, s. 58-67
  • Tidskriftsartikel (refereegranskat)abstract
    • The physiology and reproductive performance of eelpout (Zoarces viviparus) have been monitored along the Swedish coast for more than three decades. In this study, transcriptomic profiling was applied for the first time as an exploratory tool to search for new potential candidate biomarkers and to investigate possible stress responses in fish collected from a chronically polluted area. An oligonucleotide microarray with more than 15,000 sequences was used to assess differentially expressed hepatic mRNA levels in female eelpout collected from the contaminated area at Göteborg harbor compared to fish from a national reference site, Fjällbacka. Genes involved in apoptosis and DNA damage (e.g., SMAC/diablo homolog and DDIT4/DNA-damage-inducible protein transcript 4) had higher mRNA expression levels in eelpout from the harbor compared to the reference site, whereas mRNA expression of genes involved in the innate immune system (e.g., complement components and hepcidin) and protein transport/folding (e.g., signal recognition particle and protein disulfide-isomerase) were expressed at lower levels. Gene Ontology enrichment analysis revealed that genes involved biological processes associated with protein folding, immune responses and complement activation were differentially expressed in the harbor eelpout compared to the reference site. The differential mRNA expression of selected genes involved in apoptosis/DNA damage and in the innate immune system was verified by quantitative PCR, using the same fish in addition to eelpout captured four years later. Thus, our approach has identified new potential biomarkers of pollutant exposure and has generated hypotheses on disturbed physiological processes in eelpout. Despite a higher mRNA expression of genes related to apoptosis (e.g., diablo homolog) in eelpout captured in the harbor there were no significant differences in the number of TUNEL-positive apoptotic cells between sites. The mRNA level of genes involved in apoptosis/DNA damage and the status of the innate immune system in fish species captured in polluted environments should be studied in more detail to lay the groundwork for future biomonitoring studies.
  • Cuklev, Filip, et al. (författare)
  • Diclofenac in fish: Blood plasma levels similar to human therapeutic levels affect global hepatic gene expression.
  • 2011
  • Ingår i: Environmental toxicology and chemistry / SETAC. - 1552-8618. ; 30:9, s. 2126-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Diclofenac is a non-steroidal anti-inflammatory drug frequently found in the aquatic environment. Previous studies have reported histological changes in the liver, kidney and gills of fish at concentrations similar to those measured in treated sewage effluents (approximately 1?µg/L). Analyses or predictions of blood plasma levels in fish allow a direct comparison with human therapeutic plasma levels, and may therefore be used to indicate a risk for pharmacological effects in fish. To relate internal exposure to a pharmacological interaction we investigated global hepatic gene expression together with bioconcentration in blood plasma and liver of rainbow trout (Oncorhynchus mykiss) exposed to waterborne diclofenac. At the highest exposure concentration (81.5?µg/L) the fish plasma concentration reached approximately 88% of the human therapeutic levels (C(max) ) after two weeks. Using an oligonucleotide microarray followed by quantitative PCR we found extensive effects on hepatic gene expression at this concentration, and some genes were found to be regulated down to the lowest concentration tested (1.6?µg/L) corresponding to approximately 1.5% of the human C(max) . Thus, at concentrations detected in European surface waters, diclofenac can affect the expression of multiple genes in exposed fish. Functional analysis of differentially expressed genes revealed effects on biological processes such as inflammation and immune response, in agreement with the mode of action of diclofenac in mammals. In contrast to some previously reported results, the bioconcentration factor was found to be stable (4.02?±?0.75 for blood plasma and 2.54?±?0.36 for liver) regardless of the water concentration. Environ. Toxicol. Chem. © 2011 SETAC.
  • Cuklev, Filip, et al. (författare)
  • Does ketoprofen or diclofenac pose the lowest risk to fish?
  • 2012
  • Ingår i: Journal of Hazardous Materials. - 0304-3894. ; 229-230, s. 100-106
  • Tidskriftsartikel (refereegranskat)abstract
    • Ketoprofen and diclofenac are non-steroidal anti-inflammatory drugs (NSAIDs) often used for similar indications, and both are frequently found in surface waters. Diclofenac affects organ histology and gene expression in fish at around 1?g/L. Here, we exposed rainbow trout to ketoprofen (1, 10 and 100?g/L) to investigate if this alternative causes less risk for pharmacological responses in fish. The bioconcentration factor from water to fish blood plasma was <0.05 (4 for diclofenac based on previous studies). Ketoprofen only reached up to 0.6‰ of the human therapeutic plasma concentration, thus the probability of target-related effects was estimated to be fairly low. Accordingly, a comprehensive analysis of hepatic gene expression revealed no consistent responses. In some contrast, trout exposed to undiluted, treated sewage effluents bioconcentrated ketoprofen and other NSAIDs much more efficiently, according to a meta-analysis of recent studies. Neither of the setups is however an ideal representation of the field situation. If a controlled exposure system with a single chemical in pure water is a reasonable representation of the environment, then the use of ketoprofen is likely to pose a lower risk for wild fish than diclofenac, but if bioconcentration factors from effluent-exposed fish are applied, the risks may be more similar.
  • Gunnarsson, Lina-Maria, 1977-, et al. (författare)
  • Sensitive and robust gene expression changes in fish exposed to estrogen – a microarray approach
  • 2007
  • Ingår i: BMC Genomics. - 1471-2164. ; 8:149
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Vitellogenin is a well established biomarker for estrogenic exposure in fish. However, effects on gonadal differentiation at concentrations of estrogen not sufficient to give rise to a measurable vitellogenin response suggest that more sensitive biomarkers would be useful. Induction of zona pellucida genes may be more sensitive but their specificities are not as clear. The objective of this study was to find additional sensitive and robust candidate biomarkers of estrogenic exposure. Results Hepatic mRNA expression profiles were characterized in juvenile rainbow trout exposed to a measured concentration of 0.87 and 10 ng ethinylestradiol/L using a salmonid cDNA microarray. The higher concentration was used to guide the subsequent identification of generally more subtle responses at the low concentration not sufficient to induce vitellogenin. A meta-analysis was performed with data from the present study and three similar microarray studies using different fish species and platforms. Within the generated list of presumably robust responses, several well-known estrogen-regulated genes were identified. Two genes, confirmed by quantitative RT-PCR (qPCR), fulfilled both the criteria of high sensitivity and robustness; the induction of the genes encoding zona pellucida protein 3 and a nucleoside diphosphate kinase (nm23). Conclusion The cross-species, cross-platform meta-analysis correctly identified several robust responses. This adds confidence to our approach used for identifying candidate biomarkers. Specifically, we propose that analyses of an nm23 gene together with zona pellucida genes may increase the possibilities to detect an exposure to low levels of estrogenic compounds in fish.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy