SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leeb Tosso) srt2:(2015-2019)"

Sökning: WFRF:(Leeb Tosso) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bianchi, Matteo, et al. (författare)
  • A Multi-Breed Genome-Wide Association Analysis for Canine Hypothyroidism Identifies a Shared Major Risk Locus on CFA12
  • 2015
  • Ingår i: ; 10:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypothyroidism is a complex clinical condition found in both humans and dogs, thought to be caused by a combination of genetic and environmental factors. In this study we present a multi-breed analysis of predisposing genetic risk factors for hypothyroidism in dogs using three high-risk breeds-the Gordon Setter, Hovawart and the Rhodesian Ridgeback. Using a genome-wide association approach and meta-analysis, we identified a major hypothyroidism risk locus shared by these breeds on chromosome 12 (p = 2.1x10(-11)). Further characterisation of the candidate region revealed a shared similar to 167 kb risk haplotype (4,915,018-5,081,823 bp), tagged by two SNPs in almost complete linkage disequilibrium. This breed-shared risk haplotype includes three genes (LHFPL5, SRPK1 and SLC26A8) and does not extend to the dog leukocyte antigen (DLA) class II gene cluster located in the vicinity. These three genes have not been identified as candidate genes for hypothyroid disease previously, but have functions that could potentially contribute to the development of the disease. Our results implicate the potential involvement of novel genes and pathways for the development of canine hypothyroidism, raising new possibilities for screening, breeding programmes and treatments in dogs. This study may also contribute to our understanding of the genetic etiology of human hypothyroid disease, which is one of the most common endocrine disorders in humans.
  •  
2.
  • Olsson, Mia, et al. (författare)
  • Genome-Wide Analyses Suggest Mechanisms Involving Early B-cell Development in Canine IgA Deficiency
  • 2015
  • Ingår i: ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunoglobulin A deficiency (IgAD) is the most common primary immune deficiency disorder in both humans and dogs, characterized by recurrent mucosal tract infections and a predisposition for allergic and other immune mediated diseases. In several dog breeds, low IgA levels have been observed at a high frequency and with a clinical resemblance to human IgAD. In this study, we used genome-wide association studies (GWAS) to identify genomic regions associated with low IgA levels in dogs as a comparative model for human IgAD. We used a novel percentile groups-approach to establish breed-specific cut-offs and to perform analyses in a close to continuous manner. GWAS performed in four breeds prone to low IgA levels (German shepherd, Golden retriever, Labrador retriever and Shar-Pei) identified 35 genomic loci suggestively associated (p <0.0005) to IgA levels. In German shepherd, three genomic regions (candidate genes include KIRREL3 and SERPINA9) were genome-wide significantly associated (p <0.0002) with IgA levels. A ~20kb long haplotype on CFA28, significantly associated (p = 0.0005) to IgA levels in Shar-Pei, was positioned within the first intron of the gene SLIT1. Both KIRREL3 and SLIT1 are highly expressed in the central nervous system and in bone marrow and are potentially important during B-cell development. SERPINA9 expression is restricted to B-cells and peaks at the time-point when B-cells proliferate into antibody-producing plasma cells. The suggestively associated regions were enriched for genes in Gene Ontology gene sets involving inflammation and early immune cell development.
  •  
3.
  • Tengvall, Katarina, 1980-, et al. (författare)
  • Multiple regulatory variants located in cell type-specific enhancers within the PKP2 locus form major risk and protective haplotypes for canine atopic dermatitis in German shepherd dogs
  • 2016
  • Ingår i: ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundCanine atopic dermatitis (CAD) is a chronic inflammatory skin disease triggered by allergic reactions involving IgE antibodies directed towards environmental allergens. We previously identified a ~1.5 Mb locus on canine chromosome 27 associated with CAD in German shepherd dogs (GSDs). Fine-mapping indicated association closest to the PKP2 gene encoding plakophilin 2.ResultsAdditional genotyping and association analyses in GSDs combined with control dogs from five breeds with low-risk for CAD revealed the top SNP 27:19,086,778 (p = 1.4 × 10−7) and a rare ~48 kb risk haplotype overlapping the PKP2 gene and shared only with other high-risk CAD breeds. We selected altogether nine SNPs (four top-associated in GSDs and five within the ~48 kb risk haplotype) that spanned ~280 kb forming one risk haplotype carried by 35 % of the GSD cases and 10 % of the GSD controls (OR = 5.1, p = 5.9 × 10−5), and another haplotype present in 85 % of the GSD cases and 98 % of the GSD controls and conferring a protective effect against CAD in GSDs (OR = 0.14, p = 0.0032). Eight of these SNPs were analyzed for transcriptional regulation using reporter assays where all tested regions exerted regulatory effects on transcription in epithelial and/or immune cell lines, and seven SNPs showed allelic differences. The DNA fragment with the top-associated SNP 27:19,086,778 displayed the highest activity in keratinocytes with 11-fold induction of transcription by the risk allele versus 8-fold by the control allele (pdifference = 0.003), and also mapped close (~3 kb) to an ENCODE skin-specific enhancer region.ConclusionsOur experiments indicate that multiple CAD-associated genetic variants located in cell type-specific enhancers are involved in gene regulation in different cells and tissues. No single causative variant alone, but rather multiple variants combined in a risk haplotype likely contribute to an altered expression of the PKP2 gene, and possibly nearby genes, in immune and epithelial cells, and predispose GSDs to CAD.
  •  
4.
  • Felkel, Sabine, et al. (författare)
  • The horse Y chromosome as an informative marker for tracing sire lines
  • 2019
  • Ingår i: Scientific Reports. - : Nature Publishing Group: Open Access Journals - Option C / Nature Publishing Group. - 2045-2322 .- 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of the Y chromosome is the best-established way to reconstruct paternal family history in humans. Here, we applied fine-scaled Y-chromosomal haplotyping in horses with biallelic markers and demonstrate the potential of our approach to address the ancestry of sire lines. We de novo assembled a draft reference of the male-specific region of the Y chromosome from Illumina short reads and then screened 5.8 million basepairs for variants in 130 specimens from intensively selected and rural breeds and nine Przewalski's horses. Among domestic horses we confirmed the predominance of a young'crown haplogroup' in Central European and North American breeds. Within the crown, we distinguished 58 haplotypes based on 211 variants, forming three major haplogroups. In addition to two previously characterised haplogroups, one observed in Arabian/Coldblooded and the other in Turkoman/Thoroughbred horses, we uncovered a third haplogroup containing Iberian lines and a North African Barb Horse. In a genealogical showcase, we distinguished the patrilines of the three English Thoroughbred founder stallions and resolved a historic controversy over the parentage of the horse 'Galopin', born in 1872. We observed two nearly instantaneous radiations in the history of Central and Northern European Y-chromosomal lineages that both occurred after domestication 5,500 years ago.
  •  
5.
  • Wallner, Barbara, et al. (författare)
  • Y Chromosome Uncovers the Recent Oriental Origin of Modern Stallions
  • 2017
  • Ingår i: ; 27:13, s. 2029-2035
  • Tidskriftsartikel (refereegranskat)abstract
    • The Y chromosome directly reflects male genealogies, but the extremely low Y chromosome sequence diversity in horses has prevented the reconstruction of stallion genealogies [1, 2]. Here, weresolve the first Y chromosomegenealogy of modern horses by screening 1.46 Mb of the male-specific region of the Y chromosome (MSY) in 52 horses from 21 breeds. Based on highly accurate pedigree data, we estimated the de novo mutation rate of the horse MSY and showed that various modern horse Y chromosome lineages split much later than the domestication of the species. Apart from few private northern European haplotypes, all modern horse breeds clustered together in a roughly 700-year-old haplogroup that was transmitted to Europe by the import of Oriental stallions. The Oriental horse group consisted of two major subclades: the Original Arabian lineage and the Turkoman horse lineage. We show that the English Thoroughbred MSY was derived from the Turkoman lineage and that English Thoroughbred sires are largely responsible for the predominance of this haplotype in modern horses.
  •  
6.
  • Wucher, Valentin, et al. (författare)
  • FEELnc : a tool for long non-coding RNA annotation and its application to the dog transcriptome
  • 2017
  • Ingår i: ; 45:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and monitoring RNA populations. One of the main bottlenecks, however, is to correctly identify the different classes of RNAs among the plethora of reconstructed transcripts, particularly those that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program that accurately annotates lncRNAs based on a Random Forest model trained with general features such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-the-art tools shows that FEELnc achieves similar or better classification performance on GENCODE and NONCODE data sets. The program also provides specific modules that enable the user to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and to identify lncRNAs even in the absence of a training set of non-coding RNAs. We used FEELnc on a real data set comprising 20 canine RNA-seq samples produced by the European LUPA consortium to substantially expand the canine genome annotation to include 10 374 novel lncRNAs and 58 640 mRNA transcripts. FEELnc moves beyond conventional coding potential classifiers by providing a standardized and complete solution for annotating lncRNAs and is freely available at https://github.com/tderrien/FEELnc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy