SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Menon Usha) ;srt2:(2020)"

Sökning: WFRF:(Menon Usha) > (2020)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Jingjing, et al. (författare)
  • Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk
  • 2020
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322 .- 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In breast cancer, high levels of homeobox protein Hox-B13 (HOXB13) have been associated with disease progression of ER-positive breast cancer patients and resistance to tamoxifen treatment. Since HOXB13 p.G84E is a prostate cancer risk allele, we evaluated the association between HOXB13 germline mutations and breast cancer risk in a previous study consisting of 3,270 familial non-BRCA1/2 breast cancer cases and 2,327 controls from the Netherlands. Although both recurrent HOXB13 mutations p.G84E and p.R217C were not associated with breast cancer risk, the risk estimation for p.R217C was not very precise. To provide more conclusive evidence regarding the role of HOXB13 in breast cancer susceptibility, we here evaluated the association between HOXB13 mutations and increased breast cancer risk within 81 studies of the international Breast Cancer Association Consortium containing 68,521 invasive breast cancer patients and 54,865 controls. Both HOXB13 p.G84E and p.R217C did not associate with the development of breast cancer in European women, neither in the overall analysis (OR = 1.035, 95% CI = 0.859-1.246, P = 0.718 and OR = 0.798, 95% CI = 0.482-1.322, P = 0.381 respectively), nor in specific high-risk subgroups or breast cancer subtypes. Thus, although involved in breast cancer progression, HOXB13 is not a material breast cancer susceptibility gene.
  •  
2.
  • Zhan, Haoyu, et al. (författare)
  • Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses
  • 2020
  • Ingår i: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 52:6, s. 572-
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide analysis identifies 32 loci associated with breast cancer susceptibility, accounting for estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype(1-3). To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P < 5.0 x 10(-8)), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate < 0.05). Five loci showed associations (P < 0.05) in opposite directions between luminal and non-luminal subtypes. In silico analyses showed that these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 54.2% for luminal A-like disease and 37.6% for triple-negative disease. The odds ratios of polygenic risk scores, which included 330 variants, for the highest 1% of quantiles compared with middle quantiles were 5.63 and 3.02 for luminal A-like and triple-negative disease, respectively. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy