SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Murtagh Donal P. 1959 ) srt2:(2008)"

Sökning: WFRF:(Murtagh Donal P. 1959 ) > (2008)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
2.
3.
  •  
4.
  • Strong, K., et al. (författare)
  • Validation of ACE-FTS N2O measurements
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 8, s. 4759-4786
  • Tidskriftsartikel (refereegranskat)
5.
6.
7.
8.
  • Ekström, Mattias, 1977-, et al. (författare)
  • Comparison of satellite limb-sounding humidity climatologies of the uppermost tropical troposphere
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 8:2, s. 309-320
  • Tidskriftsartikel (refereegranskat)abstract
    • Humidity climatologies of the tropical uppermost troposphere from satellite limb emission measurements have been compared. Four instruments are considered; UARS-MLS, Odin-SMR, and Aura-MLS operating in the microwave region, and MIPAS in the infrared region. A reference for the comparison is obtained by MOZAIC in-situ measurements. The upper tropospheric humidity products were compared on basis of their empirical probability density functions and seasonally averaged horizontal fields at two altitude layers, 12 and 15 km. The probability density functions of the microwave datasets were found to be in very good agreement with each other, and were also consistent with MOZAIC. The average seasonal humidities differ with less than 10%RHi between the instruments, indicating that stated measurement accuracies of 20–30% are conservative estimates. The systematic uncertainty in Odin-SMR data due to cloud correction was also independently estimated to be 10%RHi. MIPAS humidity profiles were found to suffer from cloud contamination, with only 30% of the measurements reaching into the upper troposphere, but under clear-sky conditions there is a good agreement between MIPAS, Odin-SMR and Aura-MLS. Odin-SMR and the two MLS datasets can be treated as independent, being based on different underlying spectroscopy and technology. The good agreement between the microwave limb-sounders, and MOZAIC, is therefore an important step towards understanding the upper tropospheric humidity. The found accuracy of 10%RHi is approaching the level required to validate climate modelling of the upper troposphere humidity. The comparison of microwave and infrared also stresses that microwave limb-sounding is necessary for a complete view of the upper troposphere.
9.
10.
  • Khosrawi, F., et al. (författare)
  • Seasonal cycle of averages of nitrous oxide and ozone in the Northern and Southern Hemisphere polar, midlatitude, and tropical regions derived from ILAS/ILAS-II and Odin/SMR observations
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227. ; 113:D18, s. D18305
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern and Southern Hemispheric monthly averages of ozone (O-3) and nitrous oxide (N2O) have been suggested as a tool for evaluating atmospheric photochemical models. An adequate data set for such an evaluation can be derived from measurements made by satellites which, in general, have a high spatial and temporal coverage. Here, we use measurements made by the Improved Limb Atmospheric Spectrometers (ILAS and ILAS-II) which use the solar occultation technique and by the Odin-Sub-Millimetre Radiometer (Odin/SMR) which passively observes thermal emissions from the Earth's limb. From ILAS/ILAS-II and Odin/SMR observations, 1-year data sets of monthly averaged O-3 and N2O, covering a full seasonal cycle, were derived for the latitude range between 60 - 90 degrees N and 60 - 90 degrees S, respectively, by partitioning the data into equal bins of altitude or potential temperature. A comparison between both data sets in this latitude region shows a good agreement and verifies that limited sampling from satellite occultation experiments does not constitute a problem for deriving such a full seasonal cycle of monthly averaged N2O and O-3. Since Odin/SMR provides measurements globally, a 1-year data set of monthly averaged N2O and O-3 is reported here for both the entire Northern and Southern Hemispheres from these measurements. Further, these hemispheric data sets from Odin/SMR are separated into data sets of monthly averaged N2O and O-3 for the low latitudes, midlatitudes, and high latitudes. The resulting families of curves help to differentiate between O-3 changes due to photochemistry from those due to transport. These 1-year hemispheric data sets of monthly averaged N2O and O-3 from Odin/SMR and ILAS/ILAS-II as well as the data sets of monthly averaged N2O and O-3 for the specific latitude regions from Odin/SMR provide a potentially important tool for the evaluation of atmospheric photochemical models. An example of how such an evaluation can be performed is given using data from two chemical transport models (CTMs), the Chemical Lagrangian Model of the Stratosphere (CLaMS) and the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA). We find a good agreement between Odin/SMR and the CTMs CLaMS and KASIMA with differences generally less than +/- 20%.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy