SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sandström Thomas) ;mspu:(conferencepaper)"

Sökning: WFRF:(Sandström Thomas) > Konferensbidrag

  • Resultat 1-10 av 23
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Becker, Matthias, et al. (författare)
  • Increased Reliability of Many-Core Platforms through Thermal Feedback Control
  • 2014
  • Ingår i: Performance, Power and Predictability of Many-Core Embedded Systems 3PMCES'14. - Dresden, Germany.
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we present a low overhead thermal management approach to increase reliability of many-core embedded real-time systems. Each core is controlled by a feedback controller. We adapt the utilization of the core in order to decrease the dynamic power consumption and thus the corresponding heat development. Sophisticated control mechanisms allow us to migrate the load in advance, before reaching critical temperature values and thus we can migrate in a safe way with a guarantee to meet all deadlines.
  •  
2.
  • Becker, Matthias, et al. (författare)
  • Limiting temperature gradients on many-cores by adaptive reallocation of real-time workloads
  • 2014
  • Ingår i: 19th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2014. - 9781479948468 ; s. Article number 7005241
  • Konferensbidrag (refereegranskat)abstract
    • The advent of many-core processors came with the increase in computational power needed for future applications. However new challenges arrived at the same time, especially for the real-time community. Each core on such a processor is a heat source and uneven usage can lead to hot spots on the processor, affecting its lifetime and reliability. For real-time systems, it is therefore of paramount importance to keep the temperature differences between the individual cores below critical values, in order to prevent premature failure of the system. We argue that this problem can not be solved by traditional approaches, since the growing number of cores makes them intractable. We rather argue to split the problem in the spacial domain and control the temperature on core level. The cores control their temperature by rearranging the load in a predictable manner during runtime. To achieve this, a feedback controller is implemented on each core. We conclude our work with a simulation based evaluation of the proposed approach comparing its performance against a previously presented algorithm. 
  •  
3.
  • Becker, Matthias, et al. (författare)
  • Mapping Real-Time Tasks onto Many-Core Systems considering Message Flows
  • 2014
  • Ingår i: Proceedings of the Work-in-Progress Session of the 20th IEEE Real-Time and Embedded Technology and Applications Symposium. - Berlin, Germany. ; s. 17-18
  • Konferensbidrag (refereegranskat)abstract
    • In this work we focus on the task mapping problem for many-core real-time systems. The growing number of cores connected by a Network-on-Chip (NoC) calls for sophisticated mapping techniques to meet the growing demands of real-time applications. Hardware should be used in an efficient way such that unnecessary resource usage is avoided. Because of the NP-hardness of the problem, heuristic and meta-heuristic techniques are used to find good solutions. We further consider periodic communication between tasks and we focus on a static mapping solution.
  •  
4.
  •  
5.
  •  
6.
  • Faragardi, Hamid Reza, et al. (författare)
  • A communication-aware solution framework for mapping AUTOSAR runnables on multi-core systems
  • 2014
  • Ingår i: 19th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2014. - 9781479948468 ; s. Article number 7005244
  • Konferensbidrag (refereegranskat)abstract
    • An AUTOSAR-based software application contains a set of software components, each of which encapsulates a set of runnable entities. In fact, the mission of the system is fulfilled as result of the collaboration between the runnables. Several trends have recently emerged to utilize multi-core technology to run AUTOSAR-based software. Not only the overhead of communication between the runnables is one of the major performance bottlenecks in multi-core processors but it is also the main source of unpredictability in the system. Appropriate mapping of the runnables onto a set of tasks (called mapping process) along with proper allocation of the tasks to processing cores (called task allocation process) can significantly reduce the communication overhead. In this paper, three solutions are suggested, each of which comprises both the mapping and the allocation processes. The goal is to maximize key performance aspects by reducing the overall inter-runnable communication time besides satisfying given timing and precedence constraints. A large number of randomly generated experiments are carried out to demonstrate the efficiency of the proposed solutions.
  •  
7.
  •  
8.
  • Hallmans, Daniel, et al. (författare)
  • GPGPU for Industrial Control Systems
  • 2013
  • Ingår i: 18th IEEE International Conference on Emerging Technologies & Factory Automation ETFA'13. - 978-1-4799-0862-2 ; s. Article number 6648166
  • Konferensbidrag (refereegranskat)abstract
    • In this work in progress paper we present parts of our ongoing work on using the Graphical Processing Unit (GPU) in the context of Embedded Systems. As a first step we are investigating the possibility to move functions from a Digital Signal Processor (DSP) to a GPU. If it is possible to make such a migration then it would simplify the hardware designs for some embedded systems by removing external hardware and also remove a potential life cycle issue with obsolete components. We are currently designing a test system to be able to compare performance between a legacy control system used today in industry, based on a CPU/DSP combination, to a new design with a CPU/GPU combination. In this setting the pre-filtering of sampled data, previously done in the DSP, is moved to the GPU.
  •  
9.
  • Lindgren, M., et al. (författare)
  • Applicability of using internal GPGPUs in industrial control systems
  • 2014
  • Ingår i: 19th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2014. - 9781479948468 ; s. Article number 7005096
  • Konferensbidrag (refereegranskat)abstract
    • Industrial control systems are continuously increasing in functionality, connectivity, and levels of integration, and as a consequence they require more computational power. At the same time, these systems have specific requirements related to cost, reliability, timeliness, and thermal power dissipation, which put restrictions on the hardware and software used. Today the high-end embedded CPUs not only provide multiple cores, but also integrated graphics processors (GPU) at close to no additional cost. The use of GPUs for general processing have several potential values in industrial control systems; 1) the added computational power and the high parallelism could pave way for new functionality and 2) the integrated GPU could potentially replace other hardware and thereby reduce the overall cost. In this paper we investigate the applicability of using integrated GPUs in industrial control systems. We do this by evaluating the performance of GPUs with respect to computational problem types and sizes typically found in industrial control systems. In the end we conclude that GPUs are no obvious match for industrial control systems and that several hurdles remain before a wide adoption can be motivated. 
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
  • [1]23Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy