SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schafmayer Clemens) srt2:(2018)"

Sökning: WFRF:(Schafmayer Clemens) > (2018)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abderrahmani, Amar, et al. (författare)
  • Increased Hepatic PDGF-AA Signaling Mediates Liver Insulin Resistance in Obesity-Associated Type 2 Diabetes
  • 2018
  • Ingår i: Diabetes. - American Diabetes Association Inc.. - 1939-327X. ; 67:7, s. 1310-1321
  • Tidskriftsartikel (refereegranskat)abstract
    • In type 2 diabetes (T2D), hepatic insulin resistance is strongly associated with nonalcoholic fatty liver disease (NAFLD). In this study, we hypothesized that the DNA methylome of livers from patients with T2D compared with livers of individuals with normal plasma glucose levels can unveil some mechanism of hepatic insulin resistance that could link to NAFLD. Using DNA methylome and transcriptome analyses of livers from obese individuals, we found that hypomethylation at a CpG site in PDGFA (encoding platelet-derived growth factor α) and PDGFA overexpression are both associated with increased T2D risk, hyperinsulinemia, increased insulin resistance, and increased steatohepatitis risk. Genetic risk score studies and human cell modeling pointed to a causative effect of high insulin levels on PDGFA CpG site hypomethylation, PDGFA overexpression, and increased PDGF-AA secretion from the liver. We found that PDGF-AA secretion further stimulates its own expression through protein kinase C activity and contributes to insulin resistance through decreased expression of insulin receptor substrate 1 and of insulin receptor. Importantly, hepatocyte insulin sensitivity can be restored by PDGF-AA-blocking antibodies, PDGF receptor inhibitors, and by metformin, opening therapeutic avenues. Therefore, in the liver of obese patients with T2D, the increased PDGF-AA signaling contributes to insulin resistance, opening new therapeutic avenues against T2D and possibly NAFLD.
  •  
2.
  • Neumeyer, Sonja, et al. (författare)
  • Mendelian randomisation study of age at menarche and age at menopause and the risk of colorectal cancer
  • 2018
  • Ingår i: British Journal of Cancer. - NATURE PUBLISHING GROUP. - 0007-0920 .- 1532-1827. ; 118:12, s. 1639-1647
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>BACKGROUND: Substantial evidence supports an association between use of menopausal hormone therapy and decreased colorectal cancer (CRC) risk, indicating a role of exogenous sex hormones in CRC development. However, findings on endogenous oestrogen exposure and CRC are inconsistent.</p><p>METHODS: We used a Mendelian randomisation approach to test for a causal effect of age at menarche and age at menopause as surrogates for endogenous oestrogen exposure on CRC risk. Weighted genetic risk scores based on 358 single-nucleotide polymorphisms associated with age at menarche and 51 single-nucleotide polymorphisms associated with age at menopause were used to estimate the association with CRC risk using logistic regression in 12,944 women diagnosed with CRC and 10,741 women without CRC from three consortia. Sensitivity analyses were conducted to address pleiotropy and possible confounding by body mass index.</p><p>RESULTS: Genetic risk scores for age at menarche (odds ratio per year 0.98, 95% confidence interval: 0.95-1.02) and age at menopause (odds ratio 0.98, 95% confidence interval: 0.94-1.01) were not significantly associated with CRC risk. The sensitivity analyses yielded similar results.</p><p>CONCLUSIONS: Our study does not support a causal relationship between genetic risk scores for age at menarche and age at menopause and CRC risk.</p>
  •  
3.
  • Schmit, Stephanie L, et al. (författare)
  • Novel Common Genetic Susceptibility Loci for Colorectal Cancer.
  • 2018
  • Ingår i: Journal of the National Cancer Institute. - 0027-8874 .- 1460-2105.
  • Tidskriftsartikel (refereegranskat)abstract
    • <p><strong>Background:</strong> Previous genome-wide association studies (GWAS) have identified 42 loci (P &lt; 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk.</p><p><strong>Methods:</strong> We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P &lt; 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided.</p><p><strong>Results:</strong> The discovery GWAS identified 11 variants associated with CRC at P &lt; 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0.</p><p><strong>Conclusions:</strong> This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy