SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Seino Yutaka) srt2:(2020-2021)"

Sökning: WFRF:(Seino Yutaka) > (2020-2021)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahrén, Bo, et al. (författare)
  • The incretin effect in female mice with double deletion of GLP-1 and GIP receptors
  • 2020
  • Ingår i: Journal of the Endocrine Society. - : Oxford University Press. - 2472-1972. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • To establish the contribution of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) for the incretin effect after oral glucose, studies were undertaken in female mice with genetic deletion of receptors for GIP and GLP-1 (double incretin receptor knockout [DIRKO] mice) and their wild-type (WT) counterparts. Insulin secretion was explored after oral glucose (doses ranging from 0 to 100 mg), after intravenous glucose (doses ranging from 0 to 0.75 g/kg), and after oral and intravenous glucose at matching circulating glucose. DIRKO mice had glucose intolerance after oral glucose challenges in association with impaired beta-cell function. Suprabasal area under the curve for C-peptide (AUCC-peptide) correlated linearly with suprabasal AUCglucose both in WT (r = 0.942, P = .017) and DIRKO mice (r = 0.972, P = .006). The slope of this regression was lower in DIRKO than in WT mice (0.012 ± 0.006 vs 0.031 ± 0.006 nmol C-peptide/mmol glucose, P = .042). In contrast, there was no difference in the insulin response to intravenous glucose between WT and DIRKO mice. Furthermore, oral and intravenous glucose administration at matching glucose levels showed that the augmentation of insulin secretion after oral glucose (the incretin effect) in WT mice (11.8 ± 2.3 nmol/L min) was entirely absent in DIRKO mice (3.3 ± 1.2 nmol/L min). We conclude that GIP and GLP-1 are required for normal glucose tolerance and beta-cell function after oral glucose in mice, that they are the sole incretin hormones after oral glucose at higher dose levels, and that they contribute by 65% to insulin secretion after oral glucose.
  •  
2.
  • Ahrén, Bo, et al. (författare)
  • The Insulin Response to Oral Glucose in GIP and GLP-1 Receptor Knockout Mice : Review of the Literature and Stepwise Glucose Dose Response Studies in Female Mice
  • 2021
  • Ingår i: Frontiers in Endocrinology. - : Frontiers Media S. A.. - 1664-2392. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • A key factor for the insulin response to oral glucose is the pro-glucagon derived incretin hormone glucagon-like peptide-1 (GLP-1), together with the companion incretin hormone, glucose-dependent insulinotropic polypeptide (GIP). Studies in GIP and GLP-1 receptor knockout (KO) mice have been undertaken in several studies to examine this role of the incretin hormones. In the present study, we reviewed the literature on glucose and insulin responses to oral glucose in these mice. We found six publications with such studies reporting results of thirteen separate study arms. The results were not straightforward, since glucose intolerance in GIP or GLP-1 receptor KO mice were reported only in eight of the arms, whereas normal glucose tolerance was reported in five arms. A general potential weakness of the published study is that each of them have examined effects of only one single dose of glucose. In a previous study in mice with genetic deletion of both GLP-1 and GIP receptors we showed that these mice have impaired insulin response to oral glucose after large but not small glucose loads, suggesting that the relevance of the incretin hormones may be dependent on the glucose load. To further test this hypothesis, we have now performed a stepwise glucose administration through a gastric tube (from zero to 125mg) in model experiments in anesthetized female wildtype, GLP-1 receptor KO and GIP receptor KO mice. We show that GIP receptor KO mice exhibit glucose intolerance in the presence of impaired insulin response after 100 and 125 mg glucose, but not after lower doses of glucose. In contrast, GLP-1 receptor KO mice have normal glucose tolerance after all glucose loads, in the presence of a compensatory increase in the insulin response. Therefore, based on these results and the literature survey, we suggest that GIP and GLP-1 receptor KO mice retain normal glucose tolerance after oral glucose, except after large glucose loads in GIP receptor KO mice, and we also show an adaptive mechanism in GLP-1 receptor KO mice, which needs to be further examined.
  •  
3.
  • Ahrén, Bo, et al. (författare)
  • The mediation by GLP-1 receptors of glucagon-induced insulin secretion revisited in GLP-1 receptor knockout mice
  • 2021
  • Ingår i: Peptides. - : Elsevier. - 0196-9781. ; 135
  • Tidskriftsartikel (refereegranskat)abstract
    • To study whether activation of GLP-1 receptors importantly contributes to the insulinotropic action of exogenously administered glucagon, we have performed whole animal experiments in normal mice and in mice with GLP-1 receptor knockout. Glucagon (1, 3 or 10 μg/kg), the GLP-1 receptor antagonist exendin 9-39 (30 nmol/kg), glucose (0.35 g/kg) or the incretin hormone glucose-dependent insulinotropic polypeptide (GIP; 3 nmol/kg) was injected intravenously or glucose (75 mg) was given orally through gavage. Furthermore, islets were isolated and incubated in the presence of glucose with or without glucagon. It was found that the insulin response to intravenous glucagon was preserved in GLP-1 receptor knockout mice but that glucagon-induced insulin secretion was markedly suppressed in islets from GLP-1 receptor knockout mice. Similarly, the GLP-1 receptor antagonist markedly suppressed glucagon-induced insulin secretion in wildtype mice. These data suggest that GLP-1 receptors contribute to the insulinotropic action of glucagon and that there is a compensatory mechanism in GLP-1 receptor knockout mice that counteracts a reduced effect of glucagon. Two potential compensatory mechanisms (glucose and GIP) were explored. However, neither of these seemed to explain why the insulin response to glucagon is not suppressed in GLP-1 receptor knockout mice. Based on these data we confirm the hypothesis that glucagon-induced insulin secretion is partially mediated by GLP-1 receptors on the beta cells and we propose that a compensatory mechanism, the nature of which remains to be established, is induced in GLP-1 receptor knockout mice to counteract the expected impaired insulin response to glucagon in these mice.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy