SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sirka E.) srt2:(2016)"

Sökning: WFRF:(Sirka E.) > (2016)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Paterson, R W, et al. (författare)
  • A targeted proteomic multiplex CSF assay identifies increased malate dehydrogenase and other neurodegenerative biomarkers in individuals with Alzheimer's disease pathology.
  • 2016
  • Ingår i: Translational psychiatry. - : Nature Publishing Group. - 2158-3188. ; 6:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is the most common cause of dementia. Biomarkers are required to identify individuals in the preclinical phase, explain phenotypic diversity, measure progression and estimate prognosis. The development of assays to validate candidate biomarkers is costly and time-consuming. Targeted proteomics is an attractive means of quantifying novel proteins in cerebrospinal and other fluids, and has potential to help overcome this bottleneck in biomarker development. We used a previously validated multiplexed 10-min, targeted proteomic assay to assess 54 candidate cerebrospinal fluid (CSF) biomarkers in two independent cohorts comprising individuals with neurodegenerative dementias and healthy controls. Individuals were classified as 'AD' or 'non-AD' on the basis of their CSF T-tau and amyloid Aβ1-42 profile measured using enzyme-linked immunosorbent assay; biomarkers of interest were compared using univariate and multivariate analyses. In all, 35/31 individuals in Cohort 1 and 46/36 in Cohort 2 fulfilled criteria for AD/non-AD profile CSF, respectively. After adjustment for multiple comparisons, five proteins were elevated significantly in AD CSF compared with non-AD CSF in both cohorts: malate dehydrogenase; total APOE; chitinase-3-like protein 1 (YKL-40); osteopontin and cystatin C. In an independent multivariate orthogonal projection to latent structures discriminant analysis (OPLS-DA), these proteins were also identified as major contributors to the separation between AD and non-AD in both cohorts. Independent of CSF Aβ1-42 and tau, a combination of these biomarkers differentiated AD and non-AD with an area under curve (AUC)=0.88. This targeted proteomic multiple reaction monitoring (MRM)-based assay can simultaneously and rapidly measure multiple candidate CSF biomarkers. Applying this technique to AD we demonstrate differences in proteins involved in glucose metabolism and neuroinflammation that collectively have potential clinical diagnostic utility.
  •  
2.
  •  
3.
  • Heywood, Wendy E, et al. (författare)
  • A High Throughput, Multiplexed and Targeted Proteomic CSF Assay to Quantify Neurodegenerative Biomarkers and Apolipoprotein E Isoforms Status.
  • 2016
  • Ingår i: Journal of visualized experiments : JoVE. - 1940-087X. ; :116
  • Tidskriftsartikel (refereegranskat)abstract
    • Many neurodegenerative diseases are still lacking effective treatments. Reliable biomarkers for identifying and classifying these diseases will be important in the development of future novel therapies. Often potential new biomarkers do not make it into the clinic due to limitations in their development and high costs. However, targeted proteomics using Multiple Reaction Monitoring Liquid Chromatography-tandem/Mass Spectrometry (MRM LC-MS/MS), specifically using triple quadrupole mass spectrometers, is one method that can be used to rapidly evaluate and validate biomarkers for clinical translation into diagnostic laboratories. Traditionally, this platform has been used extensively for measurement of small molecules in clinical laboratories, but it is the potential to analyze proteins, that makes it an attractive alternative to ELISA (Enzyme-Linked Immunosorbent Assay)-based methods. We describe here how targeted proteomics can be used to measure multiplexed markers of dementia, including the detection and quantitation of the known risk factor apolipoprotein E isoform 4 (ApoE4). In order to make the assay suitable for translation, it is designed to be rapid, simple, highly specific and cost effective. To achieve this, every step in the development of the assay must be optimized for the individual proteins and tissues they are analyzed in. This method describes a typical workflow including various tips and tricks to developing a targeted proteomics MRM LC-MS/MS for translation. The method development is optimized using custom synthesized versions of tryptic quantotypic peptides, which calibrate the MS for detection and then spiked into CSF to determine correct identification of the endogenous peptide in the chromatographic separation prior to analysis in the MS. To achieve absolute quantitation, stable isotope-labeled internal standard versions of the peptides with short amino acid sequence tags and containing a trypsin cleavage site, are included in the assay.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy