Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Swietlicki Erik) ;pers:(Rissler Jenny)"

Sökning: WFRF:(Swietlicki Erik) > Rissler Jenny

  • Resultat 1-10 av 53
  • [1]23456Nästa
Sortera/gruppera träfflistan
  • Fors, Erik, et al. (författare)
  • Hygroscopic properties of Amazonian biomass burning and European background HULIS and investigation of their effects on surface tension with two models linking H-TDMA to CCNC data
  • 2010
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus. - 1680-7316. ; 10:12, s. 5625-5639
  • Tidskriftsartikel (refereegranskat)abstract
    • HUmic-LIke Substances (HULIS) have been identified as major contributors to the organic carbon in atmospheric aerosol. The term "HULIS" is used to describe the organic material found in aerosol particles that resembles the humic organic material in rivers and sea water and in soils. In this study, two sets of filter samples from atmospheric aerosols were collected at different sites. One set of samples was collected at the K-puszta rural site in Hungary, about 80 km SE of Budapest, and a second was collected at a site in Rondonia, Amazonia, Brazil, during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) biomass burning season experiment. HULIS were extracted from the samples and their hygroscopic properties were studied using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) at relative humidity (RH) < 100%, and a cloud condensation nucleus counter (CCNC) at RH > 100%. The H-TDMA measurements were carried out at a dry diameter of 100 nm and for RH ranging from 30 to 98%. At 90% RH the HULIS samples showed diameter growth factors between 1.04 and 1.07, reaching values of 1.4 at 98% RH. The cloud nucleating properties of the two sets of aerosol samples were analysed using two types of thermal static cloud condensation nucleus counters. Two different parameterization models were applied to investigate the potential effect of HULIS surface activity, both yielding similar results. For the K-puszta winter HULIS sample, the surface tension at the point of activation was estimated to be lowered by between 34% (47.7 mN/m) and 31% (50.3 mN/m) for dry sizes between 50 and 120 nm in comparison to pure water. A moderate lowering was also observed for the entire water soluble aerosol sample, including both organic and inorganic compounds, where the surface tension was decreased by between 2% (71.2 mN/m) and 13% (63.3 mN/m).
  • Nordin, Erik, et al. (författare)
  • Smog Chamber Experiments of SOA Formation from Gasoline Exhaust and Light Aromatics
  • 2010
  • Konferensbidrag (övrigt vetenskapligt)abstract
    • Experiments where gasoline exhaust was exposed to UV-radiation to examine Secondary Organic Aerosol (SOA) formation were performed in a smog chamber. The Aerosol Mass Yield (formed SOA/reacted precursor mass) was determined and compared with the yield from a pure precursor experiment in the chamber and from results reported in literature. Preliminary results show that the majority of the organic aerosol mass emitted from idling gasoline cars is secondary. Further, the SOA yields when taking only C6-C10 light aromatics into account are within a similar range to pure precursor experiments, suggesting that light aromatics are dominating precursors in gasoline exhaust SOA.
  • Rissler, Jenny, et al. (författare)
  • An evaluation and comparison of cloud condensation nucleus activity models: Predicting particle critical saturation from growth at subsaturation
  • 2010
  • Ingår i: Journal of Geophysical Research-Atmospheres. - Amer Geophysical Union. - 0148-0227. ; 115
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of particles to activate and form cloud droplets influences the functioning of the Earth's hydrological cycle. This work links the particle water uptake at subsaturation to the critical supersaturation ratio needed for particles to become cloud condensation nuclei (CCN). Five models using the particle hygroscopic growth at subsaturation for predicting the critical supersaturation needed for droplet activation were applied to a laboratory data set of inorganic and organic compounds and mixtures of them. The data set consisted of hygroscopicity tandem differential mobility analyzer measurements and CCN counter measurements. No chemical composition information was used when applying the models. All models tested were based on modifications of Kohler theory and gave similar results. The agreement between predicted and measured critical supersaturations was good, considering the relatively simple models used. A trend of overestimating the critical supersaturations was observed, typically by similar to 15%. The best performing model gave on average only a 4% offset from experimental values; the model with the largest deviation was offset by 20%. A comparison was made between the number of soluble entities (ions or nondissociating molecules) estimated from the particle hygroscopic growth at 90% relative humidity (RH) and the number estimated from the particle critical supersaturation; a similar to 35% increase was observed in the effective number of entities in solution when going from 90% RH to activation. For many types of aerosols, differences in the model approaches tested do not induce large differences in the predicted critical supersaturation. However, it is most important to follow the recommendations published with the respective models and not use them indiscriminately.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 53
  • [1]23456Nästa
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy