SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Usero A.) srt2:(2015-2019)"

Sökning: WFRF:(Usero A.) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bousquet, J, et al. (författare)
  • Building Bridges for Innovation in Ageing : Synergies between Action Groups of the EIP on AHA
  • 2017
  • Ingår i: The Journal of Nutrition, Health & Aging. - : SPRINGER FRANCE. - 1279-7707 .- 1760-4788. ; 21:1, s. 92-104
  • Tidskriftsartikel (refereegranskat)abstract
    • The Strategic Implementation Plan of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) proposed six Action Groups. After almost three years of activity, many achievements have been obtained through commitments or collaborative work of the Action Groups. However, they have often worked in silos and, consequently, synergies between Action Groups have been proposed to strengthen the triple win of the EIP on AHA. The paper presents the methodology and current status of the Task Force on EIP on AHA synergies. Synergies are in line with the Action Groups' new Renovated Action Plan (2016-2018) to ensure that their future objectives are coherent and fully connected. The outcomes and impact of synergies are using the Monitoring and Assessment Framework for the EIP on AHA (MAFEIP). Eight proposals for synergies have been approved by the Task Force: Five cross-cutting synergies which can be used for all current and future synergies as they consider overarching domains (appropriate polypharmacy, citizen empowerment, teaching and coaching on AHA, deployment of synergies to EU regions, Responsible Research and Innovation), and three cross-cutting synergies focussing on current Action Group activities (falls, frailty, integrated care and chronic respiratory diseases).
  •  
2.
  • Burillo, S. G., et al. (författare)
  • ALMA resolves the torus of NGC 1068: Continuum and molecular line emission
  • 2016
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 823:1, s. Art. no. L12-
  • Tidskriftsartikel (refereegranskat)abstract
    • We used the Atacama Large Millimeter Array (ALMA) to map the emission of the CO(6-5) molecular line and the 432 mu m continuum emission from the 300 pc sized circumnuclear disk (CND) of the nearby Seyfert 2 galaxy NGC 1068 with a spatial resolution of similar to 4 pc. These observations spatially resolve the CND and, for the first time, image the dust emission, the molecular gas distribution, and the kinematics from a 7-10 pc diameter disk that represents the submillimeter counterpart of the putative torus of NGC 1068. We fitted the nuclear spectral energy distribution of the torus using ALMA and near-and mid-infrared (NIR/MIR) data with CLUMPY torus models. The mass and radius of the best-fit solution for the torus are both consistent with the values derived from the ALMA data alone: M-gas(torus) = (1 +/- 0.3) x 10(5) M-circle dot and R-torus = 3.5 +/- 0.5 pc. The dynamics of the molecular gas in the torus show strong non-circular motions and enhanced turbulence superposed on a surprisingly slow rotation pattern of the disk. By contrast with the nearly edge-on orientation of the H2O megamaser disk, we found evidence suggesting that the molecular torus is less inclined (i = 34 degrees-66 degrees) at larger radii. The lopsided morphology and complex kinematics of the torus could be the signature of the Papaloizou-Pringle instability, long predicted to likely drive the dynamical evolution of active galactic nuclei tori.
  •  
3.
  • Burillo, S. G., et al. (författare)
  • ALMA images the many faces of the NGC 1068 torus and its surroundings
  • 2019
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 632
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We investigate the fueling and the feedback of nuclear activity in the nearby (D = 14 Mpc) Seyfert 2 barred galaxy NGC 1068 by studying the distribution and kinematics of molecular gas in the torus and its connections to the host galaxy disk. Methods.We used the Atacama Large Millimeter Array (ALMA ) to image the emission of a set of molecular gas tracers in the circumnuclear disk (CND) and the torus of the galaxy using the CO(2-1), CO(3-2), and HCO+(4-3) lines and their underlying continuum emission with high spatial resolutions (0:0300 0:0900 ' 26 pc). These transitions, which span a wide range of physical conditions of molecular gas (n(H2) 103107 cm3), are instrumental in revealing the density radial stratification and the complex kinematics of the gas in the torus and its surroundings. Results. The ALMA images resolve the CND as an asymmetric ringed disk of D ' 400 pc in size and '1:4 108 M in mass. The CND shows a marked deficit of molecular gas in its central '130 pc region. The inner edge of the ring is associated with the presence of edge-brightened arcs of NIR polarized emission, which are identified with the current working surface of the ionized wind of the active galactic nucleus (AGN). ALMA proves the existence of an elongated molecular disk/torus in NGC 1068 of Mgas torus ' 3 105 M, which extends over a large range of spatial scales D ' 1030 pc around the central engine. The new observations evidence the density radial stratification of the torus: the HCO+(4-3) torus, with a full size DHCO+(43) = 11 0:6 pc, is a factor of between two and three smaller than its CO(2-1) and CO(3-2) counterparts, which have full sizes of DCO(32) = 26 0:6 pc and DCO(21) = 28 0:6 pc, respectively. This result brings into light the many faces of the molecular torus. The torus is connected to the CND through a network of molecular gas streamers detected inside the CND ring. The kinematics of molecular gas show strong departures from circular motions in the torus, the gas streamers, and the CND ring. These velocity field distortions are interconnected and are part of a 3D outflow that reflects the eects of AGN feedback on the kinematics of molecular gas across a wide range of spatial scales around the central engine. In particular, we estimate through modeling that a significant fraction of the gas inside the torus ('0:40:6 Mgas torus) and a comparable amount of mass along the gas streamers are outflowing. However, the bulk of the mass, momentum, and energy of the molecular outflow of NGC 1068 is contained at larger radii in the CND region, where the AGN wind and the radio jet are currently pushing the gas assembled at the Inner Lindblad Resonance (ILR) ring of the nuclear stellar bar. Conclusions. In our favored scenario a wide-angle AGN wind launched from the accretion disk of NGC1068 is currently impacting a sizable fraction of the gas inside the torus. However, a large gas reservoir ('1:21:8 105 M), which lies close to the equatorial plane of the torus, remains unaected by the feedback of the AGN wind and can therefore continue fueling the AGN for at least '14 Myr. Nevertheless, AGN fueling currently seems thwarted on intermediate scales (15 pc r 50 pc).
  •  
4.
  • Burillo, S. G., et al. (författare)
  • ALMA imaging of C2H emission in the disk of NGC 1068
  • 2017
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 608, s. A56-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We study the feedback of star formation and nuclear activity on the chemistry of molecular gas in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing whether the abundances of key molecular species such as ethynyl (C2H), which is a classical tracer of photon dominated regions (PDR), change in the different environments of the disk of the galaxy. Methods. We used the Atacama Large Millimeter Array (ALMA) to map the emission of the hyperfine multiplet of C2H(N = 1-0) and its underlying continuum emission in the central r similar or equal to 35" (2.5 kpc) region of the disk of NGC 1068 with a spatial resolution 1.0 x 0.7 (similar or equal to 50-70 pc). We used maps of the dust continuum emission obtained at 349 GHz by ALMA to derive the H-2 gas column densities and combined these with the C2H map at matched spatial resolution to estimate the fractional abundance of this species. We developed a set of time-dependent chemical models, which include shocks, gas-phase PDRs, and gas-grain chemical models to determine the origin of the C2H gas. Results. A sizeable fraction of the total C2H line emission is detected from the r similar or equal to 1.3 kpc starburst (SB) ring, which is a region that concentrates the bulk of the recent massive star formation in the disk traced by the Pa alpha emission complexes imaged by the Hubble Space Telescope (HST). However, the brightest C2H emission originates from a r similar or equal to 200 pc off -centered circumnuclear disk (CND), where evidence of a molecular outflow has been previously found in other molecular tracers imaged by ALMA. We also detect significant emission that connects the CND with the outer disk in a region that probes the interface between the molecular disk and ionized gas outflow out to r similar or equal to 400 pc. We derived the fractional abundances of C2H (X(C2H)) assuming local thermodynamic equilibrium (LTE) conditions and a set of excitation temperatures (T-ex) constrained by the previous multiline CO studies of the galaxy. Our estimates range from X(C2H) similar or equal to a few 10(-8) in the SB ring up to X(C2H) similar or equal to a few 10(-7) in the outflow region. The PDR models that incorporate gas-grain chemistry are able to account for X(C2H) in the SB ring for moderately dense (n(H-2) >= 10(4) cm(-3)) and moderately UV-irradiated gas (UV-field = 10(4-5) cm(-3)). Conclusions. We find that the transient conditions required to fit the high values of X(C2H) in the outflow are likely due to UV or X-ray irradiated non-dissociative shocks associated with the highly turbulent interface between the outflow and molecular gas in NGC 1068. Although the inferred local timescales are short, the erosion of molecular clouds by the active galactic nucleus (AGN) wind and/or the jet likely resupplies the interface working surface continuously, making a nearly steady state persist in the disk of the galaxy.
  •  
5.
  • Burillo, S. G., et al. (författare)
  • High-resolution imaging of the molecular outflows in two mergers: IRAS 17208-0014 and NGC 1614
  • 2015
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 580
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Galaxy evolution scenarios predict that the feedback of star formation and nuclear activity (AGN) can drive the transformation of gas-rich spiral mergers into (ultra) luminous infrared galaxies and, eventually, lead to the build-up of QSO/elliptical hosts. Aims. We study the role that star formation and AGN feedback have in launching and maintaining the molecular outflows in two starburst-dominated advanced mergers, NGC 1614 (DL = 66 Mpc) and IRAS 17208-0014 (DL = 181 Mpc), by analyzing the distribution and kinematics of their molecular gas reservoirs. Both galaxies present evidence of outflows in other phases of their ISM. Methods. We used the Plateau de Bure interferometer (PdBI) to image the CO(10) and CO(21) line emissions in NGC 1614 and IRAS 17208-0014, respectively, with high spatial resolution (0: 0051: 002). The velocity fields of the gas were analyzed and modeled to find the evidence of molecular outflows in these sources and characterize the mass, momentum, and energy of these components. Results. While most (95%) of the CO emission stems from spatially resolved (23 kpc-diameter) rotating disks, we also detect in both mergers the emission from high-velocity line wings that extend up to -500-700 km s1, well beyond the estimated virial range associated with rotation and turbulence. The kinematic major axis of the line-wing emission is tilted by 90 in NGC 1614 and by 180 in IRAS 17208-0014 relative to the major axes of their respective rotating disks. These results can be explained by the existence of non-coplanar molecular outflows in both systems: the outflow axis is nearly perpendicular to the rotating disk in NGC 1614, but it is tilted relative to the angular momentum axis of the rotating disk in IRAS 17208-0014. Conclusions. In stark contrast to NGC 1614, where star formation alone can drive its molecular outflow, the mass, energy, and momentum budget requirements of the molecular outflow in IRAS 17208-0014 can be best accounted for by the existence of a so far undetected (hidden) AGN of LAGN71011 L The geometry of the molecular outflow in IRAS 17208-0014 suggests that the outflow is launched by a non-coplanar disk that may be associated with a buried AGN in the western nucleus.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy