SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wennerberg Ann 1955 ) ;lar1:(cth);pers:(Andersson Martin 1974)"

Sökning: WFRF:(Wennerberg Ann 1955 ) > Chalmers tekniska högskola > Andersson Martin 1974

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alenezi, Ali, et al. (författare)
  • Characteristics of 2 Different Commercially Available Implants with or without Nanotopography
  • 2013
  • Ingår i: International Journal of Dentistry. - 1687-8728. ; 2013:Art. no. 769768
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to assess histologically and histomorphometrically the early bone forming properties after 3 weeks for 2 commercially available implants, one supposedly possessing nanotopography and one without, in a rabbit femur model. Twenty-four implants divided equally into 2 groups were utilized in this study. The first group (P-I MICRO+NANO) was a titanium oxide (TiO2) microblasted and noble gas ion bombarded surface while the second group (Ospol) was anodic oxidized surface with calcium and phosphate incorporation. The implants were placed in the rabbit femur unicortically and were allowed to heal for 3 weeks. After euthanasia, the samples were subjected to histologic sectioning and bone-implant contact and bone area were evaluated histomorphometrically under an optical microscope. The histomorphometric evaluation presented that the P-I MICRO+NANO implants demonstrated significantly higher new bone formation as compared to the Ospol implants. Within the limitations of this study, the results suggested that nanostructures presented significantly higher bone formation after 3 weeks in vivo, and the effect of chemistry was limited, which is indicative that nanotopography is effective at early healing periods.
2.
  •  
3.
  • Cecchinato, Francesca, et al. (författare)
  • In vitro evaluation of human fetal osteoblast response to magnesium loaded mesoporous TiO2 coating.
  • 2013
  • Ingår i: Journal of biomedical materials research. Part A. - 1552-4965. ; 102:11, s. 3862-3871
  • Tidskriftsartikel (refereegranskat)abstract
    • This work aimed to evaluate the in vitro response of Transfected Human Foetal Osteoblast (hFOB) cultured on a magnesium-loaded mesoporous TiO2 coating. The application of mesoporous films on titanium implant surfaces has shown very promising potential to enhance osseointegration. This type of coating has the ability to act as a framework to sustain bioactive agents and different drugs. Magnesium is the element that, after calcium, is the most frequently used to dope titanium implant surfaces, since it is crucial for protein formation, growth factor expression, and aids for bone mineral deposition on implant surfaces. Mesoporous TiO2 films with an average pore-size of 6 nm were produced by the evaporation-induced self-assembly method (EISA) and deposited onto titanium discs. Magnesium loading was performed by soaking the mesoporous TiO2discs in a magnesium chloride solution. Surface characterization was con- ducted by SEM, XPS, optical interferometry, and AFM. Magnesium release profile was assessed at different time points using a Magnesium Detection kit. Cell morphology and spreading were observed with SEM. The cytoskeletal organization was stained with TRITC-conjugated Phalloidin and cell viability was evaluated through a mitochondrial colorimetric (MTT) assay. Furthermore, gene expression of bone markers and cell mineralization were analyzed by real time RT-PCR and alizarin-red staining, respectively. The surface chemical analysis by XPS revealed the successful adsorption of magnesium to the mesoporous coating. The AFM measurements revealed the presence of a nanostructured surface roughness. Osteoblasts viability and adhesion as well as the gene expression were unaffected by the addition of magnesium possibly due to its rapid burst release, however, were enhanced by the 3D nanostructure of the TiO2l ayer.
  •  
4.
  • Hayashi, Mariko, et al. (författare)
  • In vitro characterization and osteoblast responses to nanostructured photocatalytic TiO2 coated surfaces
  • 2012
  • Ingår i: Acta Biomaterialia. - Elsevier. - 1742-7061. ; 8:6, s. 2411-2416
  • Tidskriftsartikel (refereegranskat)abstract
    • The aims of the study were to characterize a nanostructured photoactive titanium dioxide (TiO(2)) coating and to compare the cellular response of human osteoblasts before and after ultraviolet (UV) irradiation of the coating. A specific nanostructured TiO(2) powder (Degussa P-25), which consists of approximately 80% anatase and 20% rutile, was spin-coated onto commercially pure titanium discs, and was heat-treated thereafter. After topographical, chemical and photocatalytic property characterizations, human osteoblasts were cultured on the coated discs before and after UV irradiation. Cell morphology was evaluated by scanning electron microscopy (SEM), and cell viability was analysed by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. From the contact angle analysis, the wettability significantly improved after UV irradiation. The cultured cells were flattened with numerous elongated lammellipodia; however, no morphological differences were indicated between -UV and +UV surfaces. The MTT assay analysis showed that -UV surface presented significantly higher viability compared to the +UV surface except for one cell population group at 3h where there were no differences. The nanostructured photoactive TiO(2) surface improved its hydrophilicity by UV irradiation, however no enhancing effect in cell response was confirmed at the time tested compared to the non-irradiated surface.
  •  
5.
  • Jimbo, Ryo, 1979-, et al. (författare)
  • Genetic Responses to Nanostructured Calcium-phosphate-coated Implants.
  • 2011
  • Ingår i: Journal of dental research. - 1544-0591. ; 90:12, s. 1422-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanostructured calcium phosphate (CaP) has been histologically and biomechanically proven to enhance osseointegration of implants; however, conventional techniques were not sufficiently sensitive to capture its biological effects fully. Here, we compared the conventional removal torque (RTQ) evaluation and gene expression in tissues around nanostructured CaP-coated implants, using real-time RT-PCR, with those of uncoated implants, in a rabbit model. At 2 wks, RTQ values were significantly higher, alkaline phosphatase (ALP) expression was significantly higher, and runt-related transcription factor 2 and tumor necrosis factor-α expressions were significantly lower in the coated than in the uncoated implants. This indicates that inflammatory responses were suppressed and osteoprogenitor activity increased around the CaP-coated surface. At 4 wks, although RTQ values did not significantly differ between the 2 groups, ALP and osteocalcin (OCN) were significantly up-regulated in the coated group, indicating progressive mineralization of the bone around the implant. Moreover, an osteoclast marker, adenosine triphosphatase, which indicates acidification of the resorption lacunae, was significantly higher for the coated implants, suggesting gradual resorption of the CaP coating. This study reveals detailed genetic responses to nanostructured CaP-coated implants and provides evidence that the effect of nanotopography is significant during the osseointegration cascade.
  •  
6.
  •  
7.
  • Karlsson, Johan, 1984-, et al. (författare)
  • In vivo biomechanical stability of osseointegrating mesoporous TiO2 implants
  • 2012
  • Ingår i: Acta Biomaterialia. - 1742-7061. ; 8:12, s. 4438-4446
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesoporous materials are of high interest as implant coatings to receive an enhanced osseointegration. In this study, titanium implants coated with mesoporous TiO(2) thin films have been evaluated both in vitro and in vivo. Material characterization showed that, with partly crystalline TiO(2) (anatase), long-range-ordered hydrophilic mesoporous thin films with a pore size of 6nm were obtained. Evaluation of the mechanical resistance showed that the films were robust enough to withstand the standard implantation procedure. In vitro apatite formation was studied using simulated body fluids, showing that the pores are accessible for ions and that formation of apatite was increased due to the presence of the mesopores. An in vivo study using a rabbit model was executed in which the removal torque and histomorphometry were evaluated. The results show that the biomechanical stability of the TiO(2) coating was unaffected by the presence of mesopores and that osseointegration was achieved without any signs of inflammation.
  •  
8.
  • Meirelles, Luiz, 1974-, et al. (författare)
  • Bone reaction to nano hydroxyapatite modified titanium implants placed in a gap-healing model
  • 2008
  • Ingår i: Journal Biomedical MAterials Research - A. - 1549-3296. ; 87:3, s. 624-631
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanohydroxyapatite materials show similar chemistry to the bone apatite and depending on the underlying topography and the method of preparation, the nanohydroxyapatite may simulate the specific arrangement of the crystals in bone. Hydroxyapatite (HA) and other CaP materials have been indicated in cases in which the optimal surgical fit is not achievable during surgery, and the HA surface properties may enhance bone filling of the defect area. In this study, very smooth electropolished titanium implants were used as substrata for nano-HA surface modification and as control. One of each implant (control and nano HA) was placed in the rabbit tibia in a surgical site 0.7 mm wider than the implant diameter, resulting in a gap of 0.35 mm on each implant side. Implant stability was ensured by a fixating plate fastened with two side screws. Topographical evaluation performed with an optical interferometer revealed the absence of microstructures on both implants and higher resolution evaluation with AFM showed similar nanoroughness parameters. Surface pores detected on the AFM measurements had similar diameter, depth, and surface porosity (%). Histological evaluation demonstrated similar bone formation for the nano HA and electropolished implants after 4 weeks of healing. These results do not support that nano-HA chemistry and nanotopography will enhance bone formation when placed in a gap-healing model. The very smooth surface may have prevented optimal activity of the material and future studies may evaluate the synergic effects of the surface chemistry, micro, and nanotopography, establishing the optimal parameters for each of them.
  •  
9.
  • Meirelles, Luiz, 1974-, et al. (författare)
  • Effect of hydroxyapatite and titania nanostructures on early in vivo bone response
  • 2008
  • Ingår i: Clinical Implant Dentistry and Related Research. - 1708-8208. ; 10:4, s. 245-254
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Hydroxyapatite (HA) or titania nanostructures were applied on smooth titanium implant cylinders. The aim was to investigate whether nano-HA may result in enhanced osseointegration compared to nano-titania structures. MATERIALS AND METHODS: Surface topography evaluation included detailed characterization of nano-size structures present at the implant surface combined with surface roughness parameters at the micro- and nanometer level of resolution. Microstructures were removed from the surface to ensure that bone response observed was dependent only on the nanotopography and/or chemistry of the surface. Early in vivo histological analyses of the bone response (4 weeks) were investigated in a rabbit model. RESULTS: In the present study, nano-titania-coated implants showed an increased coverage area and feature density, forming a homogenous layer compared to nano-HA implants. Bone contact values of the nano-titania implants showed a tendency to have a higher percentage as compared to the nano-HA implants (p = .1). CONCLUSION: Thus, no evidence of enhanced bone formation to nano-HA-modified implants was observed compared to nano-titania-modified implants. The presence of specific nanostructures dependent on the surface modification exhibiting different size and distribution did modulate in vivo bone response.
  •  
10.
  • Meirelles, Luiz, 1974-, et al. (författare)
  • Nano hydroxyapatite structures influence early bone formation
  • 2008
  • Ingår i: Journal Biomedical Materials Research - A. - 1549-3296. ; 87:2, s. 299-307
  • Tidskriftsartikel (refereegranskat)abstract
    • In a study model that aims to evaluate the effect of nanotopography on bone formation, micrometer structures known to alter bone formation, should be removed. Electropolished titanium implants were prepared to obtain a surface topography in the absence of micro structures, thereafter the implants were divided in two groups. The test group was modified with nanosize hydroxyapatite particles; the other group was left uncoated and served as control for the experiment. Topographical evaluation demonstrated increased nanoroughness parameters for the nano-HA implant and higher surface porosity compared to the control implant. The detected features had increased size and diameter equivalent to the nano-HA crystals present in the solution and the relative frequency of the feature size and diameter was very similar. Furthermore, feature density per microm(2) showed a decrease of 13.5% on the nano-HA implant. Chemical characterization revealed calcium and phosphorous ions on the modified implants, whereas the control implants consisted of pure titanium oxide. Histological evaluation demonstrated significantly increased bone formation to the coated (p < 0.05) compared to uncoated implants after 4 weeks of healing. These findings indicate for the first time that early bone formation is dependent on the nanosize hydroxyapatite features, but we are unaware if we see an isolated effect of the chemistry or of the nanotopography or a combination of both.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy