SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wennerberg Ann 1955 ) ;lar1:(cth);pers:(Jimbo Ryo 1979)"

Sökning: WFRF:(Wennerberg Ann 1955 ) > Chalmers tekniska högskola > Jimbo Ryo 1979

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alenezi, Ali, et al. (författare)
  • Characteristics of 2 Different Commercially Available Implants with or without Nanotopography
  • 2013
  • Ingår i: International Journal of Dentistry. - 1687-8728. ; 2013:Art. no. 769768
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to assess histologically and histomorphometrically the early bone forming properties after 3 weeks for 2 commercially available implants, one supposedly possessing nanotopography and one without, in a rabbit femur model. Twenty-four implants divided equally into 2 groups were utilized in this study. The first group (P-I MICRO+NANO) was a titanium oxide (TiO2) microblasted and noble gas ion bombarded surface while the second group (Ospol) was anodic oxidized surface with calcium and phosphate incorporation. The implants were placed in the rabbit femur unicortically and were allowed to heal for 3 weeks. After euthanasia, the samples were subjected to histologic sectioning and bone-implant contact and bone area were evaluated histomorphometrically under an optical microscope. The histomorphometric evaluation presented that the P-I MICRO+NANO implants demonstrated significantly higher new bone formation as compared to the Ospol implants. Within the limitations of this study, the results suggested that nanostructures presented significantly higher bone formation after 3 weeks in vivo, and the effect of chemistry was limited, which is indicative that nanotopography is effective at early healing periods.
2.
  • Hayashi, Mariko, et al. (författare)
  • In vitro characterization and osteoblast responses to nanostructured photocatalytic TiO2 coated surfaces
  • 2012
  • Ingår i: Acta Biomaterialia. - Elsevier. - 1742-7061. ; 6:8, s. 2411-2416
  • Tidskriftsartikel (refereegranskat)abstract
    • The aims of the study were to characterize a nanostructured photoactive titanium dioxide (TiO(2)) coating and to compare the cellular response of human osteoblasts before and after ultraviolet (UV) irradiation of the coating. A specific nanostructured TiO(2) powder (Degussa P-25), which consists of approximately 80% anatase and 20% rutile, was spin-coated onto commercially pure titanium discs, and was heat-treated thereafter. After topographical, chemical and photocatalytic property characterizations, human osteoblasts were cultured on the coated discs before and after UV irradiation. Cell morphology was evaluated by scanning electron microscopy (SEM), and cell viability was analysed by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. From the contact angle analysis, the wettability significantly improved after UV irradiation. The cultured cells were flattened with numerous elongated lammellipodia; however, no morphological differences were indicated between -UV and +UV surfaces. The MTT assay analysis showed that -UV surface presented significantly higher viability compared to the +UV surface except for one cell population group at 3h where there were no differences. The nanostructured photoactive TiO(2) surface improved its hydrophilicity by UV irradiation, however no enhancing effect in cell response was confirmed at the time tested compared to the non-irradiated surface.
  •  
3.
  • Jimbo, Ryo, 1979-, et al. (författare)
  • Genetic Responses to Nanostructured Calcium-phosphate-coated Implants.
  • 2011
  • Ingår i: Journal of dental research. - 1544-0591. ; 90:12, s. 1422-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanostructured calcium phosphate (CaP) has been histologically and biomechanically proven to enhance osseointegration of implants; however, conventional techniques were not sufficiently sensitive to capture its biological effects fully. Here, we compared the conventional removal torque (RTQ) evaluation and gene expression in tissues around nanostructured CaP-coated implants, using real-time RT-PCR, with those of uncoated implants, in a rabbit model. At 2 wks, RTQ values were significantly higher, alkaline phosphatase (ALP) expression was significantly higher, and runt-related transcription factor 2 and tumor necrosis factor-α expressions were significantly lower in the coated than in the uncoated implants. This indicates that inflammatory responses were suppressed and osteoprogenitor activity increased around the CaP-coated surface. At 4 wks, although RTQ values did not significantly differ between the 2 groups, ALP and osteocalcin (OCN) were significantly up-regulated in the coated group, indicating progressive mineralization of the bone around the implant. Moreover, an osteoclast marker, adenosine triphosphatase, which indicates acidification of the resorption lacunae, was significantly higher for the coated implants, suggesting gradual resorption of the CaP coating. This study reveals detailed genetic responses to nanostructured CaP-coated implants and provides evidence that the effect of nanotopography is significant during the osseointegration cascade.
  •  
4.
  • Karlsson, Johan, 1984-, et al. (författare)
  • In vivo biomechanical stability of osseointegrating mesoporous TiO2 implants
  • 2012
  • Ingår i: Acta Biomaterialia. - 1742-7061. ; 8:12, s. 4438-4446
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesoporous materials are of high interest as implant coatings to receive an enhanced osseointegration. In this study, titanium implants coated with mesoporous TiO(2) thin films have been evaluated both in vitro and in vivo. Material characterization showed that, with partly crystalline TiO(2) (anatase), long-range-ordered hydrophilic mesoporous thin films with a pore size of 6nm were obtained. Evaluation of the mechanical resistance showed that the films were robust enough to withstand the standard implantation procedure. In vitro apatite formation was studied using simulated body fluids, showing that the pores are accessible for ions and that formation of apatite was increased due to the presence of the mesopores. An in vivo study using a rabbit model was executed in which the removal torque and histomorphometry were evaluated. The results show that the biomechanical stability of the TiO(2) coating was unaffected by the presence of mesopores and that osseointegration was achieved without any signs of inflammation.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy