SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wennerberg Ann 1955 ) ;lar1:(gu);pers:(Andersson Martin 1974)"

Sökning: WFRF:(Wennerberg Ann 1955 ) > Göteborgs universitet > Andersson Martin 1974

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Jimbo, Ryo, 1979-, et al. (författare)
  • Histological and three-dimensional evaluation of osseointegration to nanostructured calcium phosphate-coated implants.
  • 2011
  • Ingår i: Acta biomaterialia. - 1878-7568.
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanostructures on implant surfaces have been shown to enhance osseointegration; however, commonly used evaluation techniques are probably not sufficiently sensitive to fully determine the effects of this process. This study aimed to observe the osseointegration properties of nanostructured calcium phosphate (CaP)-coated implants, by using a combination of three-dimensional imaging and conventional histology. Titanium implants were coated with stable CaP nanoparticles using an immersion technique followed by heat treatment. Uncoated implants were used as the control. After topographical and chemical characterizations, implants were inserted into the rabbit femur. After 2 and 4weeks, the samples were retrieved for micro-computed tomography and histomorphometric evaluation. Scanning electron microscopy evaluation indicated that the implant surface was modified at the nanoscale by CaP to obtain surface textured with rod-shaped structures. Relative to the control, the bone-to-implant contact for the CaP-coated implant was significantly higher at 4weeks after the implant surgery. Further, corresponding 3-D images showed active bone formation surrounding the implant. 3-D quantification and 2-D histology demonstrated statistical correlation; moreover, 3-D quantification indicated a statistical decrease in bone density in the non-coated control implant group between 2 and 4weeks after the surgery. The application of 3-D evaluation further clarified the temporal characteristics and biological reaction of implants in bone.
  •  
3.
  • Meirelles, Luiz, 1974-, et al. (författare)
  • Bone reaction to nano hydroxyapatite modified titanium implants placed in a gap-healing model
  • 2008
  • Ingår i: Journal Biomedical MAterials Research - A. - 1549-3296. ; 87:3, s. 624-631
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanohydroxyapatite materials show similar chemistry to the bone apatite and depending on the underlying topography and the method of preparation, the nanohydroxyapatite may simulate the specific arrangement of the crystals in bone. Hydroxyapatite (HA) and other CaP materials have been indicated in cases in which the optimal surgical fit is not achievable during surgery, and the HA surface properties may enhance bone filling of the defect area. In this study, very smooth electropolished titanium implants were used as substrata for nano-HA surface modification and as control. One of each implant (control and nano HA) was placed in the rabbit tibia in a surgical site 0.7 mm wider than the implant diameter, resulting in a gap of 0.35 mm on each implant side. Implant stability was ensured by a fixating plate fastened with two side screws. Topographical evaluation performed with an optical interferometer revealed the absence of microstructures on both implants and higher resolution evaluation with AFM showed similar nanoroughness parameters. Surface pores detected on the AFM measurements had similar diameter, depth, and surface porosity (%). Histological evaluation demonstrated similar bone formation for the nano HA and electropolished implants after 4 weeks of healing. These results do not support that nano-HA chemistry and nanotopography will enhance bone formation when placed in a gap-healing model. The very smooth surface may have prevented optimal activity of the material and future studies may evaluate the synergic effects of the surface chemistry, micro, and nanotopography, establishing the optimal parameters for each of them.
  •  
4.
  • Meirelles, Luiz, 1974-, et al. (författare)
  • Effect of hydroxyapatite and titania nanostructures on early in vivo bone response
  • 2008
  • Ingår i: Clinical Implant Dentistry and Related Research. - 1708-8208. ; 10:4, s. 245-254
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Hydroxyapatite (HA) or titania nanostructures were applied on smooth titanium implant cylinders. The aim was to investigate whether nano-HA may result in enhanced osseointegration compared to nano-titania structures. MATERIALS AND METHODS: Surface topography evaluation included detailed characterization of nano-size structures present at the implant surface combined with surface roughness parameters at the micro- and nanometer level of resolution. Microstructures were removed from the surface to ensure that bone response observed was dependent only on the nanotopography and/or chemistry of the surface. Early in vivo histological analyses of the bone response (4 weeks) were investigated in a rabbit model. RESULTS: In the present study, nano-titania-coated implants showed an increased coverage area and feature density, forming a homogenous layer compared to nano-HA implants. Bone contact values of the nano-titania implants showed a tendency to have a higher percentage as compared to the nano-HA implants (p = .1). CONCLUSION: Thus, no evidence of enhanced bone formation to nano-HA-modified implants was observed compared to nano-titania-modified implants. The presence of specific nanostructures dependent on the surface modification exhibiting different size and distribution did modulate in vivo bone response.
  •  
5.
  • Meirelles, Luiz, 1974-, et al. (författare)
  • Nano hydroxyapatite structures influence early bone formation
  • 2008
  • Ingår i: Journal Biomedical Materials Research - A. - 1549-3296. ; 87:2, s. 299-307
  • Tidskriftsartikel (refereegranskat)abstract
    • In a study model that aims to evaluate the effect of nanotopography on bone formation, micrometer structures known to alter bone formation, should be removed. Electropolished titanium implants were prepared to obtain a surface topography in the absence of micro structures, thereafter the implants were divided in two groups. The test group was modified with nanosize hydroxyapatite particles; the other group was left uncoated and served as control for the experiment. Topographical evaluation demonstrated increased nanoroughness parameters for the nano-HA implant and higher surface porosity compared to the control implant. The detected features had increased size and diameter equivalent to the nano-HA crystals present in the solution and the relative frequency of the feature size and diameter was very similar. Furthermore, feature density per microm(2) showed a decrease of 13.5% on the nano-HA implant. Chemical characterization revealed calcium and phosphorous ions on the modified implants, whereas the control implants consisted of pure titanium oxide. Histological evaluation demonstrated significantly increased bone formation to the coated (p < 0.05) compared to uncoated implants after 4 weeks of healing. These findings indicate for the first time that early bone formation is dependent on the nanosize hydroxyapatite features, but we are unaware if we see an isolated effect of the chemistry or of the nanotopography or a combination of both.
  •  
6.
7.
  •  
8.
  • Svanborg, Lory Melin, et al. (författare)
  • The effect of hydroxyapatite nanocrystals on early bone formation surrounding dental implants.
  • 2011
  • Ingår i: International journal of oral and maxillofacial surgery. - 1399-0020. ; 40:3, s. 308
  • Tidskriftsartikel (refereegranskat)abstract
    • The knowledge of how nanostructures might affect early bone healing and osseointegration is limited. The aim of this study was to investigate if nanometer thick coatings of hydroxyapatite nanocrystals applied on a moderately rough surface might enhance early bone healing on screw-shaped dental implants and to evaluate if the thickness of the coat influences healing. Sandblasted and acid etched titanium implants coated with two different thicknesses of hydroxyapatite (test implants) and sandblasted and acid etched titanium implants (control implants), were inserted in rabbit tibia. After a healing time of 2, 4 and 9 weeks, a removal torque analysis and a histological evaluation were performed. The results from the removal torque analysis showed a tendency for higher values for the double coated hydroxyapatite after 4 weeks and for both the coated surfaces after 9 weeks of healing. The histological evaluations indicated slightly more new bone formation with the coated implants compared with the control; the differences did not reach statistical significance. The present study could not support the importance of nanometer thick coatings of hydroxyapatite nanocrystals in early bone healing, at least not when applied on a blasted and etched surface and placed in a cortical bone.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy