SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yang Xiaohong R) srt2:(2015-2019)"

Sökning: WFRF:(Yang Xiaohong R) > (2015-2019)

  • Resultat 1-10 av 13
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barrdahl, Myrto, et al. (författare)
  • A comprehensive analysis of polymorphic variants in steroid hormone and insulin-like growth factor-1 metabolism and risk of in situ breast cancer : Results from the Breast and Prostate Cancer Cohort Consortium
  • 2018
  • Ingår i: International Journal of Cancer. - John Wiley and Sons Inc.. - 0020-7136. ; 142:6, s. 1182-1188
  • Tidskriftsartikel (refereegranskat)abstract
    • We assessed the association between 1,414 single nucleotide polymorphisms (SNPs) in genes involved in synthesis and metabolism of steroid hormones and insulin-like growth factor 1, and risk of breast cancer in situ (BCIS), with the aim of determining whether any of these were disease specific. This was carried out using 1,062 BCIS cases and 10,126 controls as well as 6,113 invasive breast cancer cases from the Breast and Prostate Cancer Cohort Consortium (BPC3). Three SNPs showed at least one nominally significant association in homozygous minor versus homozygous major models. ACVR2A-rs2382112 (ORhom=3.05, 95%CI=1.72-5.44, Phom=1.47 × 10-4), MAST2-rs12124649 (ORhom=1.73, 95% CI =1.18-2.54, Phom=5.24 × 10-3), and INSR-rs10500204 (ORhom=1.96, 95% CI=1.44-2.67, Phom=1.68 × 10-5) were associated with increased risk of BCIS; however, only the latter association was significant after correcting for multiple testing. Furthermore, INSR-rs10500204 was more strongly associated with the risk of BCIS than invasive disease in case-only analyses using the homozygous minor versus homozygous major model (ORhom=1.78, 95% CI=1.30-2.44, Phom=3.23 × 10-4). The SNP INSR-rs10500204 is located in an intron of the INSR gene and is likely to affect binding of the promyelocytic leukemia (PML) protein. The PML gene is known as a tumor suppressor and growth regulator in cancer. However, it is not clear on what pathway the A-allele of rs10500204 could operate to influence the binding of the protein. Hence, functional studies are warranted to investigate this further.
  •  
2.
  • Michailidou, Kyriaki, et al. (författare)
  • Association analysis identifies 65 new breast cancer risk loci.
  • 2017
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 551:7678, s. 92-94
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P &lt; 5 × 10-8. The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.</p>
  •  
3.
  • Yang, Xiaohong R., et al. (författare)
  • Multiple rare variants in high-risk pancreatic cancer-related genes may increase risk for pancreatic cancer in a subset of patients with and without germline CDKN2A mutations
  • 2016
  • Ingår i: Human Genetics. - Springer. - 0340-6717. ; 135:11, s. 1241-1249
  • Tidskriftsartikel (refereegranskat)abstract
    • The risk of pancreatic cancer (PC) is increased in melanoma-prone families but the causal relationship between germline CDKN2A mutations and PC risk is uncertain, suggesting the existence of non-CDKN2A factors. One genetic possibility involves patients having mutations in multiple high-risk PC-related genes; however, no systematic examination has yet been conducted. We used next-generation sequencing data to examine 24 putative PC-related genes in 43 PC patients with and 23 PC patients without germline CDKN2A mutations and 1001 controls. For each gene and the four pathways in which they occurred, we tested whether PC patients (overall or CDKN2A+ and CDKN2A− cases separately) had an increased number of rare nonsynonymous variants. Overall, we identified 35 missense variants in PC patients, 14 in CDKN2A+ and 21 in CDKN2A− PC cases. We found nominally significant associations for mismatch repair genes (MLH1, MSH2, MSH6, PMS2) in all PC patients and for ATM, CPA1, and PMS2 in CDKN2A− PC patients. Further, nine CDKN2A+ and four CDKN2A− PC patients had rare potentially deleterious variants in multiple PC-related genes. Loss-of-function variants were only observed in CDKN2A− PC patients, with ATM having the most pathogenic variants. Also, ATM variants (n = 5) were only observed in CDKN2A− PC patients with a family history that included digestive system tumors. Our results suggest that a subset of PC patients may have increased risk because of germline mutations in multiple PC-related genes.
  •  
4.
  • Couch, Fergus J, et al. (författare)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • Ingår i: Nature Communications. - Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10-8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
5.
  • Couch, Fergus J., et al. (författare)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • Ingår i: Nature Communications. - NATURE PUBLISHING GROUP. - 2041-1723 .- 2041-1723. ; 7:11375, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P&amp;lt;5 x 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P&amp;lt;0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for similar to 11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.</p>
  •  
6.
  • Fanourgakis, George S., et al. (författare)
  • Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - Copernicus Gesellschaft mbH. - 1680-7316. ; 19:13, s. 8591-8617
  • Tidskriftsartikel (refereegranskat)abstract
    • A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters >50 and >120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (<0.1%) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN0.2) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB -13% and -22% for updraft velocities 0.3 and 0.6ms-1, respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (Nd=Na) and to updraft velocity (Nd=w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities Nd=Na and Nd=w; models may be predisposed to be too "aerosol sensitive" or "aerosol insensitive" in aerosol-cloud-climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain intermodel biases on the aerosol indirect effect.
7.
  • Fehringer, Gordon, et al. (författare)
  • Cross-cancer genome-wide analysis of lung, ovary, breast, prostate and colorectal cancer reveals novel pleiotropic associations
  • 2016
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 76:17, s. 5103-5114
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-staged approach to conduct genome-wide association studies for lung, ovary, breast, prostate and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic loci. Findings were replicated in independent association studies (55,789 cases, 330,490 controls). We identified a novel pleiotropic association at 1q22 involving breast and lung squamous cell carcinoma, with eQTL analysis showing an association with ADAM15/THBS3 gene expression in lung. We also identified a known breast cancer locus CASP8/ALS2CR12 associated with prostate cancer, a known cancer locus at CDKN2B-AS1 with different variants associated with lung adenocarcinoma and prostate cancer and confirmed the associations of a breast BRCA2 locus with lung and serous ovarian cancer. This is the largest study to date examining pleiotropy across multiple cancer-associated loci, identifying common mechanisms of cancer development and progression.</p>
  •  
8.
  • Helgadottir, Hildur, et al. (författare)
  • Phenocopies in melanoma-prone families with germ-line CDKN2A mutations
  • 2018
  • Ingår i: Genetics in Medicine. - Lippincott Williams & Wilkins. - 1098-3600. ; 20:9, s. 1087-1090
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Carriers of CDKN2A mutations have high risks of melanoma and certain other cancers. In this study we examined the occurrence of tumors among CDKN2A wild type (wt) members of melanoma-prone families with CDKN2A mutations. Methods: Swedish and US melanoma-prone families with CDKN2A mutations were included. Data was collected on tumors diagnosed among family members. Among the CDKN2A mutated families, members with CDKN2A wt status who were diagnosed with melanoma were designated phenocopies. Results: Of patients with melanoma in the CDKN2A mutated families (n = 266), 7.1%, were seen among members with CDKN2A wt status (phenocopy rate). Among the CDKN2A wt family members of the CDKN2A mutated families (n = 256), 7.4% were diagnosed with melanoma. The prospective relative risk for melanomas was significantly higher among the CDKN2A wt subjects compared with population-based controls (7.4 (95% confidence interval 1.7–33.2)), while no elevated risks of nonmelanoma cancers were seen and their offspring did not have significantly elevated risks of melanoma or other cancers. Conclusion: Members of CDKN2A mutation carrying families who test negative for their family’s mutation have moderately increased risk for melanoma and should, in addition to being considered for continuing dermatologic surveillance, be encouraged to follow sun safety recommendations and practice skin self-exams.
  •  
9.
  • Taylor, Nicholas J, et al. (författare)
  • Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT
  • 2019
  • Ingår i: Journal of the American Academy of Dermatology. - Elsevier. - 0190-9622. ; 81:2, s. 386-394
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Although rare in the general population, highly penetrant germline mutations in CDKN2A are responsible for 5-40% of melanoma cases reported in melanoma-prone families. We sought to determine whether MELPREDICT was generalizable to a global series of melanoma families and whether performance improvements can be achieved.METHODS: 2,116 familial melanoma cases were ascertained by the international GenoMEL Consortium. We recapitulated the MELPREDICT model within our data (GenoMELPREDICT) to assess performance improvements by adding phenotypic risk factors and history of pancreatic cancer. We report areas under the curve (AUC) with 95% confidence intervals (CI) along with net reclassification indices (NRI) as performance metrics.RESULTS: MELPREDICT performed well (AUC=0.752; 95%CI: 0.730, 0.775), and GenoMELPREDICT performance was similar (AUC=0.748; 95% CI: 0.726, 0.771). Adding a reported history of pancreatic cancer yielded discriminatory improvement (p<0.0001) in GenoMELPREDICT (AUC=0.772; 95%CI: 0.750, 0.793; NRI=0.40). Including phenotypic risk factors did not improve performance.CONCLUSION: The MELPREDICT model functioned well in a global dataset of familial melanoma cases. Adding pancreatic cancer history improved model prediction. GenoMELPREDICT is a simple tool for predicting CDKN2A mutational status among melanoma patients from melanoma-prone families and can aid in counselling these patients towards genetic testing or cancer risk counselling.
  •  
10.
  • Taylor, Nicholas J., et al. (författare)
  • Germline Variation at CDKN2A and Associations with Nevus Phenotypes among Members of Melanoma Families
  • 2017
  • Ingår i: Journal of Investigative Dermatology. - Elsevier. - 0022-202X. ; 137:12, s. 2606-2612
  • Tidskriftsartikel (refereegranskat)abstract
    • Germline mutations in CDKN2A are frequently identified among melanoma kindreds and are associated with increased atypical nevus counts. However, a clear relationship between pathogenic CDKN2A mutation carriage and other nevus phenotypes including counts of common acquired nevi has not yet been established. Using data from GenoMEL, we investigated the relationships between CDKN2A mutation carriage and 2-mm, 5-mm, and atypical nevus counts among blood-related members of melanoma families. Compared with individuals without a pathogenic mutation, those who carried one had an overall higher prevalence of atypical (odds ratio = 1.64; 95% confidence interval = 1.18–2.28) nevi but not 2-mm nevi (odds ratio = 1.06; 95% confidence interval = 0.92–1.21) or 5-mm nevi (odds ratio = 1.26; 95% confidence interval = 0.94–1.70). Stratification by case status showed more pronounced positive associations among non-case family members, who were nearly three times (odds ratio = 2.91; 95% confidence interval = 1.75–4.82) as likely to exhibit nevus counts at or above the median in all three nevus categories simultaneously when harboring a pathogenic mutation (vs. not harboring one). Our results support the hypothesis that unidentified nevogenic genes are co-inherited with CDKN2A and may influence carcinogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy