SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Aalto Susanne 1964) srt2:(2015-2019)"

Search: WFRF:(Aalto Susanne 1964) > (2015-2019)

  • Result 1-10 of 68
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aalto, Susanne, 1964, et al. (author)
  • A precessing molecular jet signaling an obscured, growing supermassive black hole in NGC 1377?
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590, s. Art. no. A73-
  • Journal article (peer-reviewed)abstract
    • With high resolution (0."25 × 0."18) ALMA CO 3-2 (345 GHz) observations of the nearby (D = 21 Mpc, 1" = 102 pc), extremely radio-quiet galaxy NGC 1377, we have discovered a high-velocity, very collimated nuclear outflow which we interpret as a molecular jet with a projected length of ± 150 pc. The launch region is unresolved and lies inside a radius r 40% of the flux in NGC 1377 and may be a slower, wide-angle molecular outflow which is partially entrained by the molecular jet. We discuss the driving mechanism of the molecular jet and suggest that it is either powered by a (faint) radio jet or by an accretion disk-wind similar to those found towards protostars. It seems unlikely that a massive jet could have been driven out by the current level of nuclear activity which should then have undergone rapid quenching. The light jet would only have expelled 10% of the inner gas and may facilitate nuclear activity instead of suppressing it. The nucleus of NGC 1377 harbours intense embedded activity and we detect emission from vibrationally excited HCN J = 4-3?2 = 1f which is consistent with hot gas and dust. We find large columns of H2 in the centre of NGC 1377 which may be a sign of a high rate of recent gas infall. The dynamical age ofthe molecular jet is short (
  •  
2.
  • Aalto, Susanne, 1964 (author)
  • Astrochemistry and star formation in nearby galaxies: From galaxy disks to hot nuclei
  • 2016
  • In: EAS Publications Series. - : EDP Sciences. - 1633-4760 .- 1638-1963. - 9782759820221 ; 75-76, s. 73-80
  • Conference paper (peer-reviewed)abstract
    • Studying the molecular phase of the interstellar medium in galaxies is fundamental for the understanding of the onset and evolution of compact and extended star formation, and of the growth of supermassive black holes. Molecular line emission is an excellent tracer of chemical, physical and dynamical conditions in the cold neutral gas. Key molecules in extragalactic studies are e.g. HCN, HCO+, HC3N, SiO, CH3OH, H2O. Furthermore, we can use IR excited molecular emission to probe the very inner regions of luminous infrared galaxies allowing us to get past the optically thick dust barrier of the compact obscured nuclei where lines of CO, HCN and HCO+ in their vibrational ground state (?=0) may be self-absorbed. Finally, molecular outflows and their chemistry are briefly discussed-including new ALMA results on for example the outflow of the lenticular galaxy NGC1377 and a study of the chemistry of the outflow of the quasar Mrk231.
  •  
3.
  • Aalto, Susanne, 1964 (author)
  • Galaxies and Galaxy Nuclei: From Hot Cores to Cold Outflows
  • 2015
  • In: 4th ALMA Science Conference on Revolution in Astronomy with ALMA: The Third Year, Tokyo, Japan, 8-11 December. - 9781583818831 ; 499, s. 85-93
  • Conference paper (peer-reviewed)abstract
    • Studying the molecular phase of the interstellar medium in galaxies is fundamental for the understanding of the onset and evolution of star formation and the growth of supermassive black holes. We can use molecules as observational tools exploiting them as tracers of chemical, physical and dynamical conditions. In this short review, key molecules (e.g. HCN, HCO+, HNC, HC3N, CN) in identifying the nature of buried activity and its evolution are discussed including some standard astrochemical scenarios. Furthermore, we can use IR excited molecular emission to probe the very inner regions of luminous infrared galaxies (LIRGs) allowing us to get past the optically thick dust barrier of the compact obscured nuclei. We show that the vibrationally excited lines are important probes of nuclei where lines of CO, HCN and HCO+ in their vibrational ground state (v=0) may be self-absorbed. Finally, molecular outflows are briefly discussed-including the new ALMA discovery of a highly collimated (jet-like) reversed molecular outflow in the lenticular, extremely radio-quiet galaxy NGC1377.
  •  
4.
  • Aalto, Susanne, 1964, et al. (author)
  • High resolution observations of HCN and HCO+J = 3–2 in the disk and outflow of Mrk 231 -- Detection of vibrationally excited HCN in the warped nucleus
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574, s. 85-
  • Journal article (peer-reviewed)abstract
    • Aims. Our goal is to study molecular gas properties in nuclei and large scale outflows/winds from active galactic nuclei (AGNs) and starburst galaxies.Methods. We obtained high resolution (0.̋25 to 0.̋90) observations of HCN and HCO+J = 3 → 2 of the ultraluminous QSO galaxy Mrk 231 with the IRAM Plateau de Bure Interferometer (PdBI).Results. We find luminous HCN and HCO+J = 3 → 2 emission in the main disk and we detect compact (r ≲ 0''̣1 (90 pc)) vibrationally excited HCN J = 3 → 2ν2 = 1f emission centred on the nucleus. The velocity field of the vibrationally excited HCN is strongly inclined (position angle PA = 155°) compared to the east-west rotation of the main disk. The nuclear (r ≲ 0.̋1) molecular mass is estimated to 8 × 108 M⊙ with an average N(H2) of 1.2 × 1024 cm-2. Prominent, spatially extended (≳350 pc) line wings are found for HCN J = 3 → 2 with velocities up to ± 750 km s-1. Line ratios indicate that the emission is emerging in dense gas n = 104−5 × 105 cm-3 of elevated HCN abundance X(HCN) = 10-8−10-6. The highest X(HCN) also allows for the emission to originate in gas of more moderate density. We tentatively detect nuclear emission from the reactive ion HOC+ with HCO+/HOC+ = 10−20.Conclusions. The HCN ν2 = 1f line emission is consistent with the notion of a hot, dusty, warped inner disk of Mrk 231 where the ν2 = 1f line is excited by bright mid-IR 14 μm continuum. We estimate the vibrational temperature Tvib to 200−400 K. Based on relative source sizes we propose that 50% of the main HCN emission may have its excitation affected by the radiation field through IR pumping of the vibrational ground state. The HCN emission in the line wings, however, is more extended and thus likely not strongly affected by IR pumping. Our results reveal that dense clouds survive (and/or are formed) in the AGN outflow on scales of at least several hundred pc before evaporating or collapsing. The elevated HCN abundance in the outflow is consistent with warm chemistry possibly related to shocks and/or X-ray irradiated gas. An upper limit to the mass and momentum flux is 4 × 108 M⊙ and 12LAGN/c, respectively, and we discuss possible driving mechanisms for the dense outflow.
  •  
5.
  • Aalto, Susanne, 1964, et al. (author)
  • Luminous, pc-scale CO 6-5 emission in the obscured nucleus of NGC 1377
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 608, s. A22-
  • Journal article (peer-reviewed)abstract
    • High-resolution submillimeter line and continuum observations are important in probing the morphology, column density, and dynamics of the molecular gas and dust around obscured active galactic nuclei (AGNs). With high-resolution (0'.06 x 0'.05 (6 x 5 pc)) ALMA 690 GHz observations we have found bright (T-B > 80 K) and compact (full width half maximum size (FWHM) size of 10 x 7 pc) CO 6-5 line emission in the nuclear region of the extremely radio-quiet galaxy NGC 1377. The CO 6-5 intensity is partially aligned with the previously discovered jet/outflow of NGC 1377 and is tracing dense (n > 10(4 )cm(-3)) hot molecular gas at the base of the outflow. The velocity structure is complex and shifts across the jet/outflow are discussed in terms of separate overlapping kinematical components or rotation. High-velocity gas (Delta v +/- 145 km s(-1)) is detected inside r
  •  
6.
  • Aalto, Susanne, 1964, et al. (author)
  • Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 584
  • Journal article (peer-reviewed)abstract
    • We present high resolution (0.'' 4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (nu(2) = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 x 10(13) L-circle dot kpc(-2). These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, nu(2) = 1, lines of HCN are excited by intense 14 mu m mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H-2 column densities exceed 10(24) cm(-2). It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (. = 0), J = 3-2 and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self-and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions-possibly in the form of in-or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback.
  •  
7.
  • Aalto, Susanne, 1964, et al. (author)
  • The hidden heart of the luminous infrared galaxy IC 860: I. A molecular inflow feeding opaque, extreme nuclear activity
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627
  • Journal article (peer-reviewed)abstract
    • High-resolution (0.'03-0.'09 (9-26 pc)) ALMA (100-350 GHz (λ3 to 0.8 mm)) and (0.'04 (11 pc)) VLA 45 GHz measurements have been used to image continuum and spectral line emission from the inner (100 pc) region of the nearby infrared luminous galaxy IC 860. We detect compact (r ∼ 10 pc), luminous, 3 to 0.8 mm continuum emission in the core of IC 860, with brightness temperatures TB > 160 K. The 45 GHz continuum is equally compact but significantly fainter in flux. We suggest that the 3 to 0.8 mm continuum emerges from hot dust with radius r ∼ 8 pc and temperature Td ∼ 280 K, and that it is opaque at millimetre wavelengths, implying a very large H2 column density N(H2)≥ 1026 cm-2. Vibrationally excited lines of HCN v2 = 1f J = 4 - 3 and 3-2 (HCN-VIB) are seen in emission and spatially resolved on scales of 40-50 pc. The line-to-continuum ratio drops towards the inner r = 4 pc, resulting in a ring-like morphology. This may be due to high opacities and matching HCN-VIB excitation- and continuum temperatures. The HCN-VIB emission reveals a north-south nuclear velocity gradient with projected rotation velocities of v = 100 km s-1 at r = 10 pc. The brightest emission is oriented perpendicular to the velocity gradient, with a peak HCN-VIB 3-2 TB of 115 K (above the continuum). Vibrational ground-state lines of HCN 3-2 and 4-3, HC15N 4-3, HCO+ 3-2 and 4-3, and CS 7-6 show complex line absorption and emission features towards the dusty nucleus. Redshifted, reversed P-Cygni profiles are seen for HCN and HCO+ consistent with gas inflow with vin ≤ 50 km s-1. Foreground absorption structures outline the flow, and can be traced from the north-east into the nucleus. In contrast, CS 7-6 has blueshifted line profiles with line wings extending out to -180 km s-1. We suggest that a dense and slow outflow is hidden behind a foreground layer of obscuring, inflowing gas. The centre of IC 860 is in a phase of rapid evolution where an inflow is building up a massive nuclear column density of gas and dust that feeds star formation and/or AGN activity. The slow, dense outflow may be signaling the onset of feedback. The inner, r = 10 pc, IR luminosity may be powered by an AGN or a compact starburst, which then would likely require a top-heavy initial mass function.
  •  
8.
  • Aladro, Rebeca, 1979, et al. (author)
  • Molecular gas in the northern nucleus of Mrk 273: Physical and chemical properties of the disc and its outflow
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Journal article (peer-reviewed)abstract
    • Aiming to characterise the properties of the molecular gas in the ultra-luminous infrared galaxy Mrk 273 and its outflow, we used the NOEMA interferometer to image the dense-gas molecular tracers HCN, HCO+, HNC, HOC+ and HC3N at similar to 86 GHz and similar to 256 GHz with angular resolutions of 4.'' 9 x 4.'' 5 (similar to 3.7 x 3.4 kpc) and 0.'' 61 x 0.'' 55 (similar to 460 x 420 pc). We also modelled the flux of several H2O lines observed with Herschel using a radiative transfer code that includes excitation by collisions and far-infrared photons. The disc of the Mrk 273 north nucleus has two components with decoupled kinematics. The gas in the outer parts (R similar to 1.5 kpc) rotates with a south-east to north-west direction, while in the inner disc (R similar to 300 pc) follows a north-east to south-west rotation. The central 300 pc, which hosts a compact starburst region, is filled with dense and warm gas, and contains a dynamical mass of (4-5) x 10(9) M-circle dot, a luminosity of L'HCN = (3-4) x 10(8) K km s(-1) pc(2), and a dust temperature of 55 K. At the very centre, a compact core with R similar to 50 pc has a luminosity of LIR = 4 x 10(11) L-circle dot (30% of the total infrared luminosity), and a dust temperature of 95 K. The core is expanding at low velocities similar to 50-100 km s(-1), probably affected by the outflowing gas. We detect the blue-shifted component of the outflow, while the red-shifted counterpart remains undetected in our data. Its cold and dense phase reaches fast velocities up to similar to 1000 km s(-1), while the warm outflowing gas has more moderate maximum velocities of similar to 600 km s(-1). The outflow is compact, being detected as far as 460 pc from the centre in the northern direction, and has a mass of dense gas <= 8 x 10(8) M-circle dot. The difference between the position angles of the inner disc (similar to 70 degrees) and the outflow (similar to 10 degrees) indicates that the outflow is likely powered by the AGN, and not by the starburst. Regarding the chemistry in Mrk 273, we measure an extremely low HCO+/HOC+ ratio of 10 +/- 5 in the inner disc of Mrk 273.
  •  
9.
  • Alatalo, K., et al. (author)
  • After the interaction: An efficiently star-forming molecular disk in NGC 5195
  • 2016
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 830:2, s. 137-
  • Journal article (peer-reviewed)abstract
    • We present new molecular gas maps of NGC 5195 (alternatively known as M51b) from the Combined Array for Research in Millimeter Astronomy, including 12CO(1-0), 13CO(1-0), CN(1-), CS(2-1), and 3 mm continuum. We also detected HCN(1-0) and HCO+(1-0) using the Onsala Space Observatory. NGC 5195 has a 12CO/13CO ratio (R12/13= 11.4 ± 0.5) consistent with normal star-forming galaxies. The CN(1-0) intensity is higher than is seen in an average star-forming galaxy, possibly enhanced in the diffuse gas in photo-dissociation regions. Stellar template fitting of the nuclear spectrum of NGC 5195 shows two stellar populations: an 80% mass fraction of old (10 Gyr) and a 20% mass fraction of intermediate-aged (?1 Gyr) stellar populations. This provides a constraint on the timescale over which NGC 5195 experienced enhanced star formation during its interaction with M51a. The average molecular gas depletion timescale in NGC 5195 is = 3.08 Gyr, a factor of larger than the depletion timescales in nearby star-forming galaxies, but consistent with the depletion seen in CO-detected early-type galaxies. While radio continuum emission at centimeter and millimeter wavelengths is present in the vicinity of the nucleus of NGC 5195, we find it is most likely associated with nuclear star formation rather than radio-loud AGN activity. Thus, despite having a substantial interaction with M51a ?1/2 Gyr ago, the molecular gas in NGC 5195 has resettled and is currently forming stars at an efficiency consistent with settled early-type galaxies.
  •  
10.
  • Alatalo, K., et al. (author)
  • Evidence of boosted 13CO/12CO ratio in early-type galaxies in dense environments
  • 2015
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 450:4, s. 3874-3885
  • Journal article (peer-reviewed)abstract
    • We present observations of 13CO(1-0) in 17 Combined Array for Research in Millimeter Astronomy ATLAS3D early-type galaxies (ETGs), obtained simultaneously with 12CO(1-0) observations. The 13CO in six ETGs is sufficiently bright to create images. In these six sources, we do not detect any significant radial gradient in the 13CO/12CO ratio between the nucleus and the outlying molecular gas. Using the 12CO channel maps as 3D masks to stack the 13CO emission, we are able to detect 15/17 galaxies to >3σ (and 12/17 to at least 5σ) significance in a spatially integrated manner. Overall, ETGs show a wide distribution of 13CO/12CO ratios, but Virgo cluster and group galaxies preferentially show a 13CO/12CO ratio about two times larger than field galaxies, although this could also be due to a mass dependence, or the CO spatial extent (RCO/Re). ETGs whose gas has a morphologically settled appearance also show boosted 13CO/12CO ratios. We hypothesize that this variation could be caused by (i) the extra enrichment of gas from molecular reprocessing occurring in low-mass stars (boosting the abundance of 13C to 12C in the absence of external gas accretion), (ii) much higher pressure being exerted on the mid-plane gas (by the intracluster medium) in the cluster environment than in isolated galaxies, or (iii) all but the densest molecular gas clumps being stripped as the galaxies fall into the cluster. Further observations of 13CO in dense environments, particularly of spirals, as well as studies of other isotopologues, should be able to distinguish between these hypotheses.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 68

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view