SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adcock Ian M.) srt2:(2017)"

Sökning: WFRF:(Adcock Ian M.) > (2017)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kuo, Chih-Hsi Scott, et al. (författare)
  • A transcriptome-driven analysis of epithelial brushings and bronchial biopsies to define asthma phenotypes in U-BIOPRED
  • 2017
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - 1073-449X .- 1535-4970. ; 194:4, s. 443-455
  • Tidskriftsartikel (refereegranskat)abstract
    • RATIONALE AND OBJECTIVES: Asthma is a heterogeneous disease driven by diverse immunologic and inflammatory mechanisms. We used transcriptomic profiling of airway tissues to help define asthma phenotypes.METHODS: The transcriptome from bronchial biopsies and epithelial brushings of 107 moderate-to-severe asthmatics were annotated by gene-set variation analysis (GSVA) using 42 gene-signatures relevant to asthma, inflammation and immune function. Topological data analysis (TDA) of clinical and histological data was used to derive clusters and the nearest shrunken centroid algorithm used for signature refinement.RESULTS: 9 GSVA signatures expressed in bronchial biopsies and airway epithelial brushings distinguished two distinct asthma subtypes associated with high expression of T-helper type 2 (Th-2) cytokines and lack of corticosteroid response (Group 1 and Group 3). Group 1 had the highest submucosal eosinophils, high exhaled nitric oxide (FeNO) levels, exacerbation rates and oral corticosteroid (OCS) use whilst Group 3 patients showed the highest levels of sputum eosinophils and had a high BMI. In contrast, Group 2 and Group 4 patients had an 86% and 64% probability of having non-eosinophilic inflammation. Using machine-learning tools, we describe an inference scheme using the currently-available inflammatory biomarkers sputum eosinophilia and exhaled nitric oxide levels along with OCS use that could predict the subtypes of gene expression within bronchial biopsies and epithelial cells with good sensitivity and specificity.CONCLUSION: This analysis demonstrates the usefulness of a transcriptomic-driven approach to phenotyping that segments patients who may benefit the most from specific agents that target Th2-mediated inflammation and/or corticosteroid insensitivity.
  •  
2.
  • Lefaudeux, Diane, et al. (författare)
  • U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics
  • 2017
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749 .- 1097-6825. ; 139:6, s. 1797-1807
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Asthma is a heterogeneous disease in which there is a differential response to asthma treatments. This heterogeneity needs to be evaluated so that a personalized management approach can be provided.OBJECTIVES: We stratified patients with moderate-to-severe asthma based on clinicophysiologic parameters and performed an omics analysis of sputum.METHODS: Partition-around-medoids clustering was applied to a training set of 266 asthmatic participants from the European Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes (U-BIOPRED) adult cohort using 8 prespecified clinic-physiologic variables. This was repeated in a separate validation set of 152 asthmatic patients. The clusters were compared based on sputum proteomics and transcriptomics data.RESULTS: Four reproducible and stable clusters of asthmatic patients were identified. The training set cluster T1 consists of patients with well-controlled moderate-to-severe asthma, whereas cluster T2 is a group of patients with late-onset severe asthma with a history of smoking and chronic airflow obstruction. Cluster T3 is similar to cluster T2 in terms of chronic airflow obstruction but is composed of nonsmokers. Cluster T4 is predominantly composed of obese female patients with uncontrolled severe asthma with increased exacerbations but with normal lung function. The validation set exhibited similar clusters, demonstrating reproducibility of the classification. There were significant differences in sputum proteomics and transcriptomics between the clusters. The severe asthma clusters (T2, T3, and T4) had higher sputum eosinophilia than cluster T1, with no differences in sputum neutrophil counts and exhaled nitric oxide and serum IgE levels.CONCLUSION: Clustering based on clinicophysiologic parameters yielded 4 stable and reproducible clusters that associate with different pathobiological pathways.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy