SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahlqvist Emma) srt2:(2020)"

Sökning: WFRF:(Ahlqvist Emma) > (2020)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlqvist, Emma, et al. (författare)
  • Subtypes of type 2 diabetes determined from clinical parameters
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:10, s. 2086-2093
  • Forskningsöversikt (refereegranskat)abstract
    • Type 2 diabetes (T2D) is defined by a single metabolite, glucose, but is increasingly recognized as a highly heterogeneous disease, including individuals with varying clinical characteristics, disease progression, drug response, and risk of complications. Identification of subtypes with differing risk profiles and disease etiologies at diagnosis could open up avenues for personalized medicine and allow clinical resources to be focused to the patients who would be most likely to develop diabetic complications, thereby both im-proving patient health and reducing costs for the health sector. More homogeneous populations also offer increased power in experimental, genetic, and clinical studies. Clinical parameters are easily available and reflect relevant disease pathways, including the effects of both genetic and environmental exposures. We used six clinical parameters (GAD autoantibodies, age at diabetes onset, HbA1c, BMI, and measures of insulin resistance and insulin secretion) to cluster adult-onset diabetes patients into five subtypes. These sub-types have been robustly reproduced in several populations and associated with different risks of complications, comor-bidities, genetics, and response to treatment. Importantly, the group with severe insulin-deficient diabetes (SIDD) had increased risk of retinopathy and neuropathy, whereas the severe insulin-resistant diabetes (SIRD) group had the highest risk for diabetic kidney disease (DKD) and fatty liver, empha-sizing the importance of insulin resistance for DKD and hepatosteatosis in T2D. In conclusion, we believe that sub-classification using these highly relevant parameters could provide a framework for personalized medicine in diabetes.
  •  
2.
  • Garcia-Calzon, Sonia, et al. (författare)
  • Epigenetic markers associated with metformin response and intolerance in drug-naive patients with type 2 diabetes
  • 2020
  • Ingår i: Science Translational Medicine. - : AMER ASSOC ADVANCEMENT SCIENCE. - 1946-6234 .- 1946-6242. ; 12:561
  • Tidskriftsartikel (refereegranskat)abstract
    • Metformin is the first-line pharmacotherapy for managing type 2 diabetes (T2D). However, many patients with T2D do not respond to or tolerate metformin well. Currently, there are no phenotypes that successfully predict glycemic response to, or tolerance of, metformin. We explored whether blood-based epigenetic markers could discriminate metformin response and tolerance by analyzing genome-wide DNA methylation in drug-naive patients with T2D at the time of their diagnosis. DNA methylation of 11 and 4 sites differed between glycemic responders/nonresponders and metformin-tolerant/intolerant patients, respectively, in discovery and replication cohorts. Greater methylation at these sites associated with a higher risk of not responding to or not tolerating metformin with odds ratios between 1.43 and 3.09 per 1-SD methylation increase. Methylation risk scores (MRSs) of the 11 identified sites differed between glycemic responders and nonresponders with areas under the curve (AUCs) of 0.80 to 0.98. MRSs of the 4 sites associated with future metformin intolerance generated AUCs of 0.85 to 0.93. Some of these blood-based methylation markers mirrored the epigenetic pattern in adipose tissue, a key tissue in diabetes pathogenesis, and genes to which these markers were annotated to had biological functions in hepatocytes that altered metformin-related phenotypes. Overall, we could discriminate between glycemic responders/nonresponders and participants tolerant/intolerant to metformin at diagnosis by measuring blood-based epigenetic markers in drug-naive patients with T2D. This epigenetics-based tool may be further developed to help patients with T2D receive optimal therapy.
  •  
3.
  • García-Calzón, Sonia, et al. (författare)
  • Epigenetic markers associated with metformin response and intolerance in drug-naïve patients with type 2 diabetes
  • 2020
  • Ingår i: Science Translational Medicine. - 1946-6234. ; 12:561
  • Tidskriftsartikel (refereegranskat)abstract
    • Metformin is the first-line pharmacotherapy for managing type 2 diabetes (T2D). However, many patients with T2D do not respond to or tolerate metformin well. Currently, there are no phenotypes that successfully predict glycemic response to, or tolerance of, metformin. We explored whether blood-based epigenetic markers could discriminate metformin response and tolerance by analyzing genome-wide DNA methylation in drug-naïve patients with T2D at the time of their diagnosis. DNA methylation of 11 and 4 sites differed between glycemic responders/nonresponders and metformin-tolerant/intolerant patients, respectively, in discovery and replication cohorts. Greater methylation at these sites associated with a higher risk of not responding to or not tolerating metformin with odds ratios between 1.43 and 3.09 per 1-SD methylation increase. Methylation risk scores (MRSs) of the 11 identified sites differed between glycemic responders and nonresponders with areas under the curve (AUCs) of 0.80 to 0.98. MRSs of the 4 sites associated with future metformin intolerance generated AUCs of 0.85 to 0.93. Some of these blood-based methylation markers mirrored the epigenetic pattern in adipose tissue, a key tissue in diabetes pathogenesis, and genes to which these markers were annotated to had biological functions in hepatocytes that altered metformin- related phenotypes. Overall, we could discriminate between glycemic responders/nonresponders and participants tolerant/ intolerant to metformin at diagnosis by measuring blood-based epigenetic markers in drug-naïve patients with T2D. This epigenetics-based tool may be further developed to help patients with T2D receive optimal therapy.
  •  
4.
  • Hjort, Rebecka, et al. (författare)
  • Physical Activity, Genetic Susceptibility, and the Risk of Latent Autoimmune Diabetes in Adults and Type 2 Diabetes
  • 2020
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 105:11
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Physical activity (PA) has been linked to a reduced risk of type 2 diabetes by reducing weight and improving insulin sensitivity. We investigated whether PA is associated with a lower incidence of latent autoimmune diabetes in adults (LADA) and whether the association is modified by genotypes of human leukocyte antigen (HLA), transcription factor 7-like 2 (TCF7L2)-rs7903146, or the fat mass and obesity-associated gene, FTO-rs9939609. METHODS: We combined data from a Swedish case-control study and a Norwegian prospective study including 621 incident cases of LADA and 3596 cases of type 2 diabetes. We estimated adjusted pooled relative risks (RRs) and 95% CI of diabetes in relation to high (≥ 30 minutes of moderate activity 3 times/week) self-reported leisure time PA, compared to sedentariness. RESULTS: High PA was associated with a reduced risk of LADA (RR 0.61; CI, 0.43-0.86), which was attenuated after adjustment for body mass index (BMI) (RR 0.90; CI, 0.63-1.29). The reduced risk applied only to noncarriers of HLA-DQB1 and -DRB1 (RR 0.49; CI, 0.33-0.72), TCF7L2 (RR 0.62; CI, 0.45-0.87), and FTO (RR 0.51; CI, 0.32-0.79) risk genotypes. Adjustment for BMI attenuated but did not eliminate these associations. For type 2 diabetes, there was an inverse association with PA (RR 0.49; CI, 0.42-0.56), irrespective of genotype. MAIN CONCLUSIONS: Our findings indicate that high PA is associated with a reduced risk of LADA in individuals without genetic susceptibility.
  •  
5.
  • Jujić, Amra, et al. (författare)
  • Glucose-dependent insulinotropic peptide and risk of cardiovascular events and mortality : a prospective study
  • 2020
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 63:5, s. 1043-1054
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Evidence that glucose-dependent insulinotropic peptide (GIP) and/or the GIP receptor (GIPR) are involved in cardiovascular biology is emerging. We hypothesised that GIP has untoward effects on cardiovascular biology, in contrast to glucagon-like peptide 1 (GLP-1), and therefore investigated the effects of GIP and GLP-1 concentrations on cardiovascular disease (CVD) and mortality risk.Methods: GIP concentrations were successfully measured during OGTTs in two independent populations (Malmo Diet Cancer-Cardiovascular Cohort [MDC-CC] and Prevalence, Prediction and Prevention of Diabetes in Botnia [PPP-Botnia]) in a total of 8044 subjects. GLP-1 (n = 3625) was measured in MDC-CC. The incidence of CVD and mortality was assessed via national/regional registers or questionnaires. Further, a two-sample Mendelian randomisation (2SMR) analysis between the GIP pathway and outcomes (coronary artery disease [CAD] and myocardial infarction) was carried out using a GIP-associated genetic variant, rs1800437, as instrumental variable. An additional reverse 2SMR was performed with CAD as exposure variable and GIP as outcome variable, with the instrumental variables constructed from 114 known genetic risk variants for CAD.Results: In meta-analyses, higher fasting levels of GIP were associated with risk of higher total mortality (HR[95% CI] = 1.22 [1.11, 1.35]; p = 4.5 x 10(-5)) and death from CVD (HR[95% CI] 1.30 [1.11, 1.52]; p = 0.001). In accordance, 2SMR analysis revealed that increasing GIP concentrations were associated with CAD and myocardial infarction, and an additional reverse 2SMR revealed no significant effect of CAD on GIP levels, thus confirming a possible effect solely of GIP on CAD.Conclusions/interpretation: In two prospective, community-based studies, elevated levels of GIP were associated with greater risk of all-cause and cardiovascular mortality within 5-9 years of follow-up, whereas GLP-1 levels were not associated with excess risk. Further studies are warranted to determine the cardiovascular effects of GIP per se.
  •  
6.
  • Löfvenborg, Josefin E., et al. (författare)
  • Genotypes of HLA, TCF7L2, and FTO as potential modifiers of the association between sweetened beverage consumption and risk of LADA and type 2 diabetes
  • 2020
  • Ingår i: European Journal of Nutrition. - : Springer Science and Business Media LLC. - 1436-6207 .- 1436-6215. ; 59:1, s. 127-135
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Sweetened beverage consumption is associated with type 2 diabetes (T2D) and LADA. We investigated to what extent this association is mediated by BMI and whether it is modified by genotypes of HLA, TCF7L2 rs7903146, or FTO rs9939609. Methods: Swedish case–control data including incident cases of LADA (n = 386) and T2D (n = 1253) with matched population-based controls (n = 1545) was used. We estimated adjusted ORs of diabetes (95% CI) in relation to sweetened beverage intake (per daily 200 mL serving) and genotypes. The impact of BMI was estimated using causal mediation methodology. Associations with HOMA-IR and HOMA-B were explored through linear regression. Results: Sweetened beverage intake was associated with increased risk of LADA (OR 1.15, 95% CI 1.03–1.29) and T2D (OR 1.21, 1.11–1.32). BMI was estimated to mediate 17% (LADA) and 56% (T2D) of the total risk. LADA was associated with risk variants of HLA (3.44, 2.63–4.50) and TCF7L2 (1.27, 1.00–1.61) but not FTO. Only among non-carriers of high-risk HLA genotypes was sweetened beverage intake associated with risk of LADA (OR 1.32, 1.06–1.56) and HOMA-IR (beta = 0.162, p = 0.0047). T2D was associated with TCF7L2 and FTO but not HLA, and the risk conferred by sweetened beverages appeared modified by FTO (OR 1.45, 95% CI 1.21–1.73 in non-carriers). Conclusions: Our findings suggest that sweetened beverages are associated with LADA and T2D partly through mediation by excess weight, but possibly also through other mechanisms including adverse effects on insulin sensitivity. These effects seem more pronounced in individuals without genetic susceptibility.
  •  
7.
  • Mishra, Rajashree, et al. (författare)
  • Genetic Discrimination Between LADA and Childhood-Onset Type 1 Diabetes Within the MHC
  • 2020
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 43:2, s. 418-425
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The MHC region harbors the strongest loci for latent autoimmune diabetes in adults (LADA); however, the strength of association is likely attenuated compared with that for childhood-onset type 1 diabetes. In this study, we recapitulate independent effects in the MHC class I region in a population with type 1 diabetes and then determine whether such conditioning in LADA yields potential genetic discriminators between the two subtypes within this region. RESEARCH DESIGN AND METHODS: Chromosome 6 was imputed using SNP2HLA, with conditional analysis performed in type 1 diabetes case subjects (n = 1,985) and control subjects (n = 2,219). The same approach was applied to a LADA cohort (n = 1,428) using population-based control subjects (n = 2,850) and in a separate replication cohort (656 type 1 diabetes case, 823 LADA case, and 3,218 control subjects). RESULTS: The strongest associations in the MHC class II region (rs3957146, β [SE] = 1.44 [0.05]), as well as the independent effect of MHC class I genes, on type 1 diabetes risk, particularly HLA-B*39 (β [SE] = 1.36 [0.17]), were confirmed. The conditional analysis in LADA versus control subjects showed significant association in the MHC class II region (rs3957146, β [SE] = 1.14 [0.06]); however, we did not observe significant independent effects of MHC class I alleles in LADA. CONCLUSIONS: In LADA, the independent effects of MHC class I observed in type 1 diabetes were not observed after conditioning on the leading MHC class II associations, suggesting that the MHC class I association may be a genetic discriminator between LADA and childhood-onset type 1 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy