SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahmad Arslan) srt2:(2021)"

Sökning: WFRF:(Ahmad Arslan) > (2021)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bhattacharya, Prosun, 1962-, et al. (författare)
  • Prevalence of SARS-CoV-2 in Communities Through Wastewater Surveillance—a Potential Approach for Estimation of Disease Burden
  • 2021
  • Ingår i: Current Pollution Reports. - : Springer Nature. - 2198-6592. ; 7:2, s. 160-166
  • Tidskriftsartikel (refereegranskat)abstract
    • The episodic outbreak of COVID-19 due to SARS-CoV-2 is severely affecting the economy, and the global count of infected patients is increasing. The actual number of patients had been underestimated due to limited facilities for testing as well as asymptomatic nature of the expression of COVID-19 on individual basis. Tragically, for emerging economies with high population density, the situation has been more complex due to insufficient testing facilities for diagnosis of the disease. However, the recent reports about persistent shedding of viral RNA of SARS-CoV-2 in the human feces have created a possibility to track the prevalence and trends of the disease in communities, known as wastewater-based epidemiology (WBE). In this article, we highlight the current limitations and future prospects for WBE to manage pandemics.
  •  
3.
  • Hussain, Muhammad Mahroz, et al. (författare)
  • Arsenic biogeochemical cycling in paddy soil-rice system : Interaction with various factors, amendments and mineral nutrients
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 773
  • Tidskriftsartikel (refereegranskat)abstract
    • Arsenic (As) contamination is a well-recognized environmental and health issue, threatening over 200 million people worldwide with the prime cases in South and Southeast Asian and Latin American countries. Rice is mostly cultivated under flooded paddy soil conditions, where As speciation and accumulation by rice plants is controlled by various geo-environmental (biotic and abiotic) factors. In contrast to other food crops, As uptake in rice has been found to be substantially higher due to the prevalence of highly mobile and toxic As species, arsenile (As(Ill)), under paddy soil conditions. In this review, we discussed the biogeochemical cycling of As in paddy soil-rice system, described the influence of critical factors such as pH, iron oxides, organic matter, microbial species, and pathways affecting As transformation and accumulation by rice. Moreover, we elucidated As interaction with organic and inorganic amendments and mineral nutrients. The review also elaborates on As (im) mobilization processes and As uptake by rice under the influence of different mineral nutrients and amendments in paddy soil conditions, as well as their role in mitigating As transfer to rice grain. This review article provides critical information on As contamination in paddy soil-rice system, which is important to develop suitable strategies and mitigation programs for limiting As exposure via rice crop, and meet the UN's key Sustainable Development Goals (SDGs: 2 (zero hunger), 3 (good health and well-being), 12 (responsible consumption and production), and 13 (climate action)).
  •  
4.
  • Ijumulana, Julian, et al. (författare)
  • Spatial uncertainties in fluoride levels and health risks in endemic fluorotic regions of northern Tanzania
  • 2021
  • Ingår i: Groundwater for Sustainable Development. - : Elsevier BV. - 2352-801X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatial uncertainty caused by large-scale variation in fluoride (F-) occurrence remains a setback for water supply authorities in the F- belts of the world. It is estimated that approximately 80 million people in the East African Rift Valley (EARV) regions and volcanic areas exhibit a wide variety of fluorosis symptoms due to drinking water with F- concentrations higher than 1.5 mg/L (WHO guideline limit). In this study, we combined geostatistical techniques, spatial statistical methods, and geographical information systems (GIS) to (i) map the probable places with F- < 0.5 mg/L and F- > 1.5, 4.0 and 10.0 mg/L using probability kriging (PK) method, (ii) estimate the probable total population at high or low F- risk levels using univariate local Moran's I statistic, and (iii) map the spatial distribution of population at high and low F- risk levels in Manyara, Arusha and Kilimanjaro regions using GIS. It was predicted that places along the major and minor EARV mountain ranges and around the flanks of major stratovolcanoes were dominated by groundwater sources with extremely low F-(<<0.5 mg/L). In contrast, places within EARV graben were dominated by groundwater sources with F- > 1.5 mg/L. About 1 million people (similar to 20% of the total population) living around Mt. Kilimanjaro in Rombo, Moshi, and Mwanga districts are at high dental caries risk. Furthermore, it was estimated that about 2 million people (similar to 41% of the total population) in Siha, Hai, Arusha City, Hanang', Arusha, Simanjiro, and Meru districts are at high risk of dental, skeletal, and crippling fluorosis. Fluorosis, especially dental and crippling fluorosis, is an increasing disease burden at the community level due to prolonged consumption of F- contaminated water within EARV graben. The major findings of the present study are very crucial for authority to minimize the uncertainty caused by high spatial variability in geogenic F- occurrence.
  •  
5.
  • Ligate, Fanuel Josephat, et al. (författare)
  • Groundwater resources in the East African Rift Valley: Understanding the geogenic contamination and water quality challenges in Tanzania
  • 2021
  • Ingår i: Scientific African. - : Elsevier BV. - 2468-2276. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the years, groundwater has been used as a means of adaptation to the seasonal and perennial scarcity of surface water. Groundwater provides water for households, livestock, and irrigation in semi-arid areas of Tanzania. It is acknowledged that groundwater is sus-ceptible to chemical and other mineral contamination which not only poses a threat to the health of human beings and livestock but also agriculture. However, the potential of groundwater in terms of its viability and quality has not received adequate scrutiny from scholars. This paper provides a review of water quality and highlights the geogenic con-tamination of groundwater resources in Tanzania. The literature reviewed focused on the water resource sector in the major drainage basins of Tanzania, the information about drinking water quality with respect to geogenic contamination were sought. This paper has established that fluoride is the main and well-known groundwater contaminant. This is attributed to the existence of fluoride-rich minerals such as fluorite (CaF2), fluorapatite (Ca-5(PO4)(3)F), cryolite (Na3AlF6), sellaite (MgF2), villiaumite (NaF), and topaz ((Al-2(SiO4)F-2), bastnaesite ((Ca, La, Nd)CO3F), and their ash deposits peeling from the granite and alka -line volcanic rocks, dominant in the region. The presence of fluoride in water sources in northern Tanzannia, part of the EARV contributes to the serious health effects on humans such as dental, skeletal, and crippling fluorosis. In addition, some literature indicated ar-senic as a serious drinking water geogenic pollutant in the north-west parts of Tanzania. They pointed out that oxidation of arsenopyrite minerals is responsible for the dissolution and release of arsenic into groundwater. From this review we conclude that information on geochemistry/hydro-geochemistry of fluoride and arsenic in the aquifers is far inadequate and recommends that more research and development (R&D) effort s from scholars, researchers, and government institutions should be invested for further investigations and solutions. The focus should be creating awareness about the danger of using arsenic and fluoride contaminated water and development of affordable and environmental friendly water purification technologies.
  •  
6.
  • Maity, J. P., et al. (författare)
  • Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal
  • 2021
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 405
  • Tidskriftsartikel (refereegranskat)abstract
    • Arsenic (As) removal is a huge challenge, since several million people are potentially exposed (>10 μg/L World Health Organization guideline limit) through As contaminated drinking water worldwide. Review attempts to address the present situation of As removal, considering key topics on nano-technological and biological process and current progress and future perspectives of possible mitigation options have been evaluated. Different physical, chemical and biological methods are available to remove As from contaminated water/soil/wastes, where removal efficiency mainly depends on absorbent type, initial adsorbate concentration, speciation and interfering species. Oxidation is an important pretreatment step in As removal, which is generally achieved by several media such as O2/O3, HClO, KMnO4 and H2O2. The Fe-based-nanomaterials (α/β/γ-FeOOH, Fe2O3/Fe3O4–γ-Fe2O3), Fe-based-composite-compounds, activated-Al2O3, HFO, Fe-Al2O3, Fe2O3-impregnated-graphene-aerogel, iron-doped-TiO2, aerogel-based- CeTiO2, and iron-oxide-coated-manganese are effective to remove As from contaminated water. Biological processes (phytoremediation/microbiological) are effective and ecofriendly for As removal from water and/or soil environment. Microorganisms remove As from water, sediments and soil by metabolism, detoxification, oxidation-reduction, bio-adsorption, bio-precipitation, and volatilization processes. Ecofriendly As mitigation options can be achieved by utilizing an alternative As-safe-aquifer, surface-water or rainwater-harvesting. Application of hybrid (biological with chemical and physical process) and Best-Available-Technologies (BAT) can be the most effective As removal strategy to remediate As contaminated environments.
  •  
7.
  • Maity, Jyoti Prakash, et al. (författare)
  • Seven 21st century challenges of arsenic-fluoride contamination and remediation
  • 2021
  • Ingår i: Groundwater for Sustainable Development. - : Elsevier BV. - 2352-801X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Arsenic (As) and Fluoride (F) are two commonly occurring geogenic contaminants in groundwater environment, causing a range of carcinogenic and non-carcinogenic adverse health effects worldwide. Several studies have been conducted in past and many are ongoing to address As and F contamination issue of natural water. This special issue is conferring in recent times one of the emerging fields of science regarding co-occurrences of multi-contaminants within a given system and associated health risks. This special issue is divided into three sections. Section I deals with the occurrence and co-existence of As, F, and trace elements (TE) in the environment. As and F occurrence [including trace elements (TEs)] in groundwater at a global scale (example: India, Sri Lanka, Bangladesh, Ghana, and Iran, etc.) has been highlighted (Section I). The geological, and anthropogenic factors affecting As and F contamination have been observed. The state-of-art, removal techniques for As and F have been discussed. Section II and Section III incorporate all the advanced removal methods for As and F, respectively. Arsenic and F removal comprises assessing natural remediation potential (phytoremediation) including different advanced absorbents. The new findings published here, bring together a wide range of new insights on As and F behavior in the groundwater environment.
  •  
8.
  • Quino Lima, Israel, Doctoral student, 1980-, et al. (författare)
  • Geochemical mechanisms of natural arsenic mobility in the hydrogeologic system of Lower Katari Basin, Bolivian Altiplano
  • 2021
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • Arsenic (As) contamination of drinking water is a worldwide problem. The natural origin of As, its mobility, and transport are of paramount interest in Bolivian Altiplano due to its presence in mineral deposits, brines, hot springs, and volcanic rocks. In this study, a geochemical spatial-temporal approach was used to understand the sources and factors that regulate the mobilization and fate of As in water bodies as well as sediments of Lower Katari Basin (LKB). The study reveals that high levels of As (288 mu g/L), boron (B) (2473 mu g/L), manganese (Mn) (7259 mu g/L), and high salinity (23850 mu S/cm) are present in shallow drinking water wells, which exceed the guideline values of the Bolivian regulation (NB-512) and WHO. Seasonal changes (mean monthly rainfall in the dry and rainy period: 6-89 mm) and their impact on water quantity (0.9-5.1 m(3)/s), in addition to the load of solids and liquids of residual origin (Pallina River), pose health risks for the communities at the banks of the Katari River. The hydrogeological study indicates that the groundwater flows from southeast to northwest (SE-NW), which indicate interaction between groundwater and surface water in this region. The spatial distribution of As varies considerably due to geological characteristics of the area as well as due to the heterogeneously distributed evaporites in the sediments (alluvial, fluvial-lacustrine); however, the highest concentrations of As are observed in the alluvial sediments of the northern region. Sequential extraction (BCR) of sediments along with geochemical modeling (mineral saturation indices) indicates that iron (Fe) and aluminum (Al) (hydr)oxides are the most important adsorbent minerals of As in the central and southern region of LKB. The hydrochemistry of water bodies in LKB is strongly influenced by the interaction with the sediment constituents and by the spatial-temporal variations. Therefore, the determination of the distribution of As among the different geochemical fractions was useful to find the relative proportions of As transported by different chemical mechanisms (adsorption/dissolution) and their spatial-temporal variation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy