SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Akolkar Beena) srt2:(2015-2019)"

Sökning: WFRF:(Akolkar Beena) > (2015-2019)

  • Resultat 1-10 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrén Aronsson, Carin, et al. (författare)
  • Association of gluten intake during the first 5 years of life with incidence of celiac disease autoimmunity and celiac disease among children at increased risk
  • 2019
  • Ingår i: JAMA - Journal of the American Medical Association. - : American Medical Association (AMA). - 0098-7484. ; 322:6, s. 514-523
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: High gluten intake during childhood may confer risk of celiac disease. Objectives: To investigate if the amount of gluten intake is associated with celiac disease autoimmunity and celiac disease in genetically at-risk children. Design, Setting, and Participants: The participants in The Environmental Determinants of Diabetes in the Young (TEDDY), a prospective observational birth cohort study designed to identify environmental triggers of type 1 diabetes and celiac disease, were followed up at 6 clinical centers in Finland, Germany, Sweden, and the United States. Between 2004 and 2010, 8676 newborns carrying HLA antigen genotypes associated with type 1 diabetes and celiac disease were enrolled. Screening for celiac disease with tissue transglutaminase autoantibodies was performed annually in 6757 children from the age of 2 years. Data on gluten intake were available in 6605 children (98%) by September 30, 2017. Exposures: Gluten intake was estimated from 3-day food records collected at ages 6, 9, and 12 months and biannually thereafter until the age of 5 years. Main Outcomes and Measures: The primary outcome was celiac disease autoimmunity, defined as positive tissue transglutaminase autoantibodies found in 2 consecutive serum samples. The secondary outcome was celiac disease confirmed by intestinal biopsy or persistently high tissue transglutaminase autoantibody levels. Results: Of the 6605 children (49% females; median follow-up: 9.0 years [interquartile range, 8.0-10.0 years]), 1216 (18%) developed celiac disease autoimmunity and 447 (7%) developed celiac disease. The incidence for both outcomes peaked at the age of 2 to 3 years. Daily gluten intake was associated with higher risk of celiac disease autoimmunity for every 1-g/d increase in gluten consumption (hazard ratio [HR], 1.30 [95% CI, 1.22-1.38]; absolute risk by the age of 3 years if the reference amount of gluten was consumed, 28.1%; absolute risk if gluten intake was 1-g/d higher than the reference amount, 34.2%; absolute risk difference, 6.1% [95% CI, 4.5%-7.7%]). Daily gluten intake was associated with higher risk of celiac disease for every 1-g/d increase in gluten consumption (HR, 1.50 [95% CI, 1.35-1.66]; absolute risk by age of 3 years if the reference amount of gluten was consumed, 20.7%; absolute risk if gluten intake was 1-g/d higher than the reference amount, 27.9%; absolute risk difference, 7.2% [95% CI, 6.1%-8.3%]). Conclusions and Relevance: Higher gluten intake during the first 5 years of life was associated with increased risk of celiac disease autoimmunity and celiac disease among genetically predisposed children.
  •  
2.
  •  
3.
  • Beyerlein, Andreas, et al. (författare)
  • Progression from islet autoimmunity to clinical type 1 diabetes is influenced by genetic factors : Results from the prospective TEDDY study
  • 2019
  • Ingår i: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 56:9, s. 602-605
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Progression time from islet autoimmunity to clinical type 1 diabetes is highly variable and the extent that genetic factors contribute is unknown. Methods: In 341 islet autoantibody-positive children with the human leucocyte antigen (HLA) DR3/DR4-DQ8 or the HLA DR4-DQ8/DR4-DQ8 genotype from the prospective TEDDY (The Environmental Determinants of Diabetes in the Young) study, we investigated whether a genetic risk score that had previously been shown to predict islet autoimmunity is also associated with disease progression. Results: Islet autoantibody-positive children with a genetic risk score in the lowest quartile had a slower progression from single to multiple autoantibodies (p=0.018), from single autoantibodies to diabetes (p=0.004), and by trend from multiple islet autoantibodies to diabetes (p=0.06). In a Cox proportional hazards analysis, faster progression was associated with an increased genetic risk score independently of HLA genotype (HR for progression from multiple autoantibodies to type 1 diabetes, 1.27, 95% CI 1.02 to 1.58 per unit increase), an earlier age of islet autoantibody development (HR, 0.68, 95% CI 0.58 to 0.81 per year increase in age) and female sex (HR, 1.94, 95% CI 1.28 to 2.93). Conclusions: Genetic risk scores may be used to identify islet autoantibody-positive children with high-risk HLA genotypes who have a slow rate of progression to subsequent stages of autoimmunity and type 1 diabetes.
  •  
4.
  • Bonifacio, Ezio, et al. (författare)
  • Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes : A prospective study in children
  • 2018
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1676. ; 15:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Around 0.3% of newborns will develop autoimmunity to pancreatic beta cells in childhood and subsequently develop type 1 diabetes before adulthood. Primary prevention of type 1 diabetes will require early intervention in genetically at-risk infants. The objective of this study was to determine to what extent genetic scores (two previous genetic scores and a merged genetic score) can improve the prediction of type 1 diabetes. Methods and findings: The Environmental Determinants of Diabetes in the Young (TEDDY) study followed genetically at-risk children at 3- to 6-monthly intervals from birth for the development of islet autoantibodies and type 1 diabetes. Infants were enrolled between 1 September 2004 and 28 February 2010 and monitored until 31 May 2016. The risk (positive predictive value) for developing multiple islet autoantibodies (pre-symptomatic type 1 diabetes) and type 1 diabetes was determined in 4,543 children who had no first-degree relatives with type 1 diabetes and either a heterozygous HLA DR3 and DR4-DQ8 risk genotype or a homozygous DR4-DQ8 genotype, and in 3,498 of these children in whom genetic scores were calculated from 41 single nucleotide polymorphisms. In the children with the HLA risk genotypes, risk for developing multiple islet autoantibodies was 5.8% (95% CI 5.0%–6.6%) by age 6 years, and risk for diabetes by age 10 years was 3.7% (95% CI 3.0%–4.4%). Risk for developing multiple islet autoantibodies was 11.0% (95% CI 8.7%–13.3%) in children with a merged genetic score of >14.4 (upper quartile; n = 907) compared to 4.1% (95% CI 3.3%–4.9%, P < 0.001) in children with a genetic score of ≤14.4 (n = 2,591). Risk for developing diabetes by age 10 years was 7.6% (95% CI 5.3%–9.9%) in children with a merged score of >14.4 compared with 2.7% (95% CI 1.9%–3.6%) in children with a score of ≤14.4 (P < 0.001). Of 173 children with multiple islet autoantibodies by age 6 years and 107 children with diabetes by age 10 years, 82 (sensitivity, 47.4%; 95% CI 40.1%–54.8%) and 52 (sensitivity, 48.6%, 95% CI 39.3%–60.0%), respectively, had a score >14.4. Scores were higher in European versus US children (P = 0.003). In children with a merged score of >14.4, risk for multiple islet autoantibodies was similar and consistently >10% in Europe and in the US; risk was greater in males than in females (P = 0.01). Limitations of the study include that the genetic scores were originally developed from case–control studies of clinical diabetes in individuals of mainly European decent. It is, therefore, possible that it may not be suitable to all populations. Conclusions: A type 1 diabetes genetic score identified infants without family history of type 1 diabetes who had a greater than 10% risk for pre-symptomatic type 1 diabetes, and a nearly 2-fold higher risk than children identified by high-risk HLA genotypes alone. This finding extends the possibilities for enrolling children into type 1 diabetes primary prevention trials.
  •  
5.
  • Elding Larsson, Helena, et al. (författare)
  • Pandemrix® vaccination is not associated with increased risk of islet autoimmunity or type 1 diabetes in the TEDDY study children
  • 2018
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 61:1, s. 193-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: During the A/H1N1 2009 (A/California/04/2009) pandemic, mass vaccination with a squalene-containing vaccine, Pandemrix®, was performed in Sweden and Finland. The vaccination was found to cause narcolepsy in children and young adults with the HLA-DQ 6.2 haplotype. The aim of this study was to investigate if exposure to Pandemrix® similarly increased the risk of islet autoimmunity or type 1 diabetes. Methods: In The Environmental Determinants of Diabetes in the Young (TEDDY) study, children are followed prospectively for the development of islet autoimmunity and type 1 diabetes. In October 2009, when the mass vaccination began, 3401 children at risk for islet autoimmunity and type 1 diabetes were followed in Sweden and Finland. Vaccinations were recorded and autoantibodies against insulin, GAD65 and insulinoma-associated protein 2 were ascertained quarterly before the age of 4 years and semi-annually thereafter. Results: By 5 August 2010, 2413 of the 3401 (71%) children observed as at risk for an islet autoantibody or type 1 diabetes on 1 October 2009 had been vaccinated with Pandemrix®. By 31 July 2016, 232 children had at least one islet autoantibody before 10 years of age, 148 had multiple islet autoantibodies and 96 had developed type 1 diabetes. The risk of islet autoimmunity was not increased among vaccinated children. The HR (95% CI) for the appearance of at least one islet autoantibody was 0.75 (0.55, 1.03), at least two autoantibodies was 0.85 (0.57, 1.26) and type 1 diabetes was 0.67 (0.42, 1.07). In Finland, but not in Sweden, vaccinated children had a lower risk of islet autoimmunity (0.47 [0.29, 0.75]), multiple autoantibodies (0.50 [0.28, 0.90]) and type 1 diabetes (0.38 [0.20, 0.72]) compared with those who did not receive Pandemrix®. The analyses were adjusted for confounding factors. Conclusions/interpretation: Children with an increased genetic risk for type 1 diabetes who received the Pandemrix® vaccine during the A/H1N1 2009 pandemic had no increased risk of islet autoimmunity, multiple islet autoantibodies or type 1 diabetes. In Finland, the vaccine was associated with a reduced risk of islet autoimmunity and type 1 diabetes.
  •  
6.
  • Endesfelder, David, et al. (författare)
  • Time-resolved autoantibody profiling facilitates stratification of preclinical type 1 diabetes in children
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:1, s. 119-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Progression to clinical type 1 diabetes varies among children who develop b-cell autoantibodies. Differences in autoantibody patterns could relate to disease progression and etiology. Here we modeled complex longitudinal autoantibody profiles by using a novel wavelet-based algorithm. We identified clusters of similar profiles associated with various types of progression among 600 children from The Environmental Determinants of Diabetes in the Young (TEDDY) birth cohort study; these children developed persistent insulin autoantibodies (IAA), GAD autoantibodies (GADA), insulinoma-associated antigen 2 autoantibodies (IA-2A), or a combination of these, and they were followed up prospectively at 3- to 6-month intervals (median follow-up 6.5 years). Children who developed multiple autoantibody types (n = 370) were clustered, and progression from seroconversion to clinical diabetes within 5 years ranged between clusters from 6% (95% CI 0, 17.4) to 84% (59.2, 93.6). Children who seroconverted early in life (median age <2 years) and developed IAA and IA-2A that were stable-positive on follow-up had the highest risk of diabetes, and this risk was unaffected by GADA status. Clusters of children who lacked stable-positive GADA responses contained more boys and lower frequencies of the HLA-DR3 allele. Our novel algorithm allows refined grouping of b-cell autoantibody–positive children who distinctly progressed to clinical type 1 diabetes, and it provides new opportunities in searching for etiological factors and elucidating complex disease mechanisms.
  •  
7.
  • Hadley, David, et al. (författare)
  • HLA-DPB1*04:01 Protects Genetically Susceptible Children from Celiac Disease Autoimmunity in the TEDDY Study.
  • 2015
  • Ingår i: American Journal of Gastroenterology. - : Ovid Technologies (Wolters Kluwer Health). - 1572-0241 .- 0002-9270. ; 110:6, s. 915-920
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissue transglutaminase autoantibodies (tTGAs) represent the first evidence of celiac disease (CD) development. Associations of HLA-DR3-DQA1*05:01-DQB1*02:01 (i.e., DR3-DQ2) and, to a lesser extent, DR4-DQA1*03:01-DQB1*03:02 (i.e., DR4-DQ8) with the risk of CD differ by country, consistent with additional genetic heterogeneity that further refines risk. Therefore, we examined human leukocyte antigen (HLA) factors other than DR3-DQ2 for their contribution to developing tTGAs.
  •  
8.
  • Haghighi, Mona, et al. (författare)
  • A Comparison of Rule-based Analysis with Regression Methods in Understanding the Risk Factors for Study Withdrawal in a Pediatric Study
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Regression models are extensively used in many epidemiological studies to understand the linkage between specific outcomes of interest and their risk factors. However, regression models in general examine the average effects of the risk factors and ignore subgroups with different risk profiles. As a result, interventions are often geared towards the average member of the population, without consideration of the special health needs of different subgroups within the population. This paper demonstrates the value of using rule-based analysis methods that can identify subgroups with heterogeneous risk profiles in a population without imposing assumptions on the subgroups or method. The rules define the risk pattern of subsets of individuals by not only considering the interactions between the risk factors but also their ranges. We compared the rule-based analysis results with the results from a logistic regression model in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Both methods detected a similar suite of risk factors, but the rule-based analysis was superior at detecting multiple interactions between the risk factors that characterize the subgroups. A further investigation of the particular characteristics of each subgroup may detect the special health needs of the subgroup and lead to tailored interventions.
  •  
9.
  • Hagopian, William, et al. (författare)
  • Co-occurrence of Type 1 Diabetes and Celiac Disease Autoimmunity
  • 2017
  • Ingår i: Pediatrics. - : American Academy of Pediatrics (AAP). - 1098-4275 .- 0031-4005. ; 140:5
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND OBJECTIVES: Few birth cohorts have prospectively followed development of type 1 diabetes (T1D) and celiac disease (CD) autoimmunities to determine timing, extent of co-occurrence, and associated genetic and demographic factors.METHODS: In this prospective birth cohort study, 8676 children at high genetic risk of both diseases were enrolled and 5891 analyzed in median follow-up of 66 months. Along with demographic factors and HLA-DR-DQ, genotypes for HLA-DPB1 and 5 non-HLA loci conferring risk of both T1D and CD were analyzed.RESULTS: Development of persistent islet autoantibodies (IAs) and tissue transglutaminase autoantibodies (tTGAs), as well as each clinical disease, was evaluated quarterly from 3 to 48 months of age and semiannually thereafter. IAs alone appeared in 367, tTGAs alone in 808, and both in 90 children. Co-occurrence significantly exceeded the expected rate. IAs usually, but not always, appeared earlier than tTGAs. IAs preceding tTGAs was associated with increasing risk of tTGAs (hazard ratio [HR]: 1.48; 95% confidence interval [CI]: 1.15-1.91). After adjusting for country, sex, family history, and all other genetic loci, significantly greater co-occurrence was observed in children with a T1D family history (HR: 2.80), HLA-DR3/4 (HR: 1.94) and single-nucleotide polymorphism rs3184504 at SH2B3 (HR: 1.53). However, observed co-occurrence was not fully accounted for by all analyzed factors.CONCLUSIONS: In early childhood, T1D autoimmunity usually precedes CD autoimmunity. Preceding IAs significantly increases the risk of subsequent tTGAs. Co-occurrence is greater than explained by demographic factors and extensive genetic risk loci, indicating that shared environmental or pathophysiological mechanisms may contribute to the increased risk.
  •  
10.
  • Hippich, Markus, et al. (författare)
  • Genetic contribution to the divergence in type 1 diabetes risk between children from the general population and children from affected families
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:4, s. 847-857
  • Tidskriftsartikel (refereegranskat)abstract
    • The risk for autoimmunity and subsequently type 1 diabetes is 10-fold higher in children with a first-degree family history of type 1 diabetes (FDR children) than in children in the general population (GP children). We analyzed children with high-risk HLA genotypes (n = 4,573) in the longitudinal TEDDY birth cohort to determine how much of the divergent risk is attributable to genetic enrichment in affected families. Enrichment for susceptible genotypes of multiple type 1 diabetes–associated genes and a novel risk gene, BTNL2, was identified in FDR children compared with GP children. After correction for genetic enrichment, the risks in the FDR and GP children converged but were not identical for multiple islet autoantibodies (hazard ratio [HR] 2.26 [95% CI 1.6–3.02]) and for diabetes (HR 2.92 [95% CI 2.05–4.16]). Convergence varied depending upon the degree of genetic susceptibility. Risks were similar in the highest genetic susceptibility group for multiple islet autoantibodies (14.3% vs .12.7%) and diabetes (4.8% vs. 4.1%) and were up to 5.8-fold divergent for children in the lowest genetic susceptibility group, decreasing incrementally in GP children but not in FDR children. These findings suggest that additional factors enriched within affected families preferentially increase the risk of autoimmunity and type 1 diabetes in lower genetic susceptibility strata.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy