SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Almgren M) srt2:(2020)"

Sökning: WFRF:(Almgren M) > (2020)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Surendran, Praveen, et al. (författare)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
2.
  • Shah, S, et al. (författare)
  • Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 163-
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
  •  
3.
  • Jujić, Amra, et al. (författare)
  • Glucose-dependent insulinotropic peptide and risk of cardiovascular events and mortality : a prospective study
  • 2020
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 63:5, s. 1043-1054
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Evidence that glucose-dependent insulinotropic peptide (GIP) and/or the GIP receptor (GIPR) are involved in cardiovascular biology is emerging. We hypothesised that GIP has untoward effects on cardiovascular biology, in contrast to glucagon-like peptide 1 (GLP-1), and therefore investigated the effects of GIP and GLP-1 concentrations on cardiovascular disease (CVD) and mortality risk.Methods: GIP concentrations were successfully measured during OGTTs in two independent populations (Malmo Diet Cancer-Cardiovascular Cohort [MDC-CC] and Prevalence, Prediction and Prevention of Diabetes in Botnia [PPP-Botnia]) in a total of 8044 subjects. GLP-1 (n = 3625) was measured in MDC-CC. The incidence of CVD and mortality was assessed via national/regional registers or questionnaires. Further, a two-sample Mendelian randomisation (2SMR) analysis between the GIP pathway and outcomes (coronary artery disease [CAD] and myocardial infarction) was carried out using a GIP-associated genetic variant, rs1800437, as instrumental variable. An additional reverse 2SMR was performed with CAD as exposure variable and GIP as outcome variable, with the instrumental variables constructed from 114 known genetic risk variants for CAD.Results: In meta-analyses, higher fasting levels of GIP were associated with risk of higher total mortality (HR[95% CI] = 1.22 [1.11, 1.35]; p = 4.5 x 10(-5)) and death from CVD (HR[95% CI] 1.30 [1.11, 1.52]; p = 0.001). In accordance, 2SMR analysis revealed that increasing GIP concentrations were associated with CAD and myocardial infarction, and an additional reverse 2SMR revealed no significant effect of CAD on GIP levels, thus confirming a possible effect solely of GIP on CAD.Conclusions/interpretation: In two prospective, community-based studies, elevated levels of GIP were associated with greater risk of all-cause and cardiovascular mortality within 5-9 years of follow-up, whereas GLP-1 levels were not associated with excess risk. Further studies are warranted to determine the cardiovascular effects of GIP per se.
  •  
4.
  •  
5.
  • Schulz, Christina-Alexandra, et al. (författare)
  • Plasma kidney injury molecule-1 (p-KIM-1) levels and deterioration of kidney function over 16 years
  • 2020
  • Ingår i: Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. - : Oxford University Press (OUP). - 1460-2385. ; 35:2, s. 265-273
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The kidney injury molecule-1 (KIM-1) has previously been associated with kidney function in rodents and humans. Yet its role as a predictive marker for future decline in kidney function has remained less clear.Methods: At baseline (1991-1994), fasting plasma KIM-1 (p-KIM-1) was measured in 4739 participants of the population-based Malmö Diet and Cancer Study. Creatinine and cystatin C were used to calculate estimated glomerular filtration rate (eGFR) according to Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) Collaboration 2012 creatinine-cystatin C equation at baseline and follow-up examination (2007-2012). Incident CKD was defined as an eGFR <60 mL/min/1.73 m2 at follow-up.Results: During a mean follow-up time of 16.6 years, high p-KIM-1 levels were associated with a greater decline in eGFR (quartile 1 -1.36 versus quartile 4 -1.54 mL/min/1.73 m2; P < 0.001). In multivariate analyses, the risk for incident CKD at the follow-up examination was higher among participants with baseline p-KIM-1 levels in the highest quartile {odds ratio [OR] 1.45 [95% confidence interval (CI) 1.10-1.92]} compared with those within the lowest quartile. The relative impact of baseline p-KIM-1 on incidence of CKD [OR 1.20 (95% CI 1.08-1.33) per 1 standard deviation (SD) increase in p-KIM-1] was comparable to those of age and systolic blood pressure (SBP) [OR 1.55 (95% CI 1.38-1.74) and OR 1.21 (95% CI 1.09-1.35) per 1 SD increase, respectively]. Adding p-KIM-1 to a conventional risk model resulted in significantly improved C-statistics (P = 0.04) and reclassified 9% of the individuals into the correct risk direction (continuous net reclassification improvement P = 0.02). Furthermore, the risk for hospitalization due to impaired renal function increased with increasing baseline p-KIM-1 [hazard ratio per 1 SD 1.43; (95% CI 1.18-1.74)] during a mean follow-up time of 19.2 years.Conclusion: Our results show that p-KIM-1 predicts the future decline of eGFR and risk of CKD in healthy middle-aged participants. Whether p-KIM-1 can be used to prioritize preventive action that needs to be further investigated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy