SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Backström Niclas) srt2:(2015-2019)"

Sökning: WFRF:(Backström Niclas) > (2015-2019)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Höök, Lars, et al. (författare)
  • Multilayered Tuning of Dosage Compensation and Z-Chromosome Masculinization in the Wood White (Leptidea sinapis) Butterfly
  • 2019
  • Ingår i: Genome Biology and Evolution. - : OXFORD UNIV PRESS. - 1759-6653. ; 11:9, s. 2633-2652
  • Tidskriftsartikel (refereegranskat)abstract
    • In species with genetic sex determination, dosage compensation can evolve to equal expression levels of sex-linked and autosomal genes. Current knowledge about dosage compensation has mainly been derived frommale-heterogametic (XX/XY) model organisms, whereas less is understood about the process in female-heterogametic systems (ZZ/ZW). In moths and butterflies, downregulation of Z-linked expression in males (ZZ) to match the expression level in females (ZW) is often observed. However, little is known about the underlying regulatory mechanisms, or if dosage compensation patterns vary across ontogenetic stages. In this study, we assessed dynamics of Z-linked and autosomal expression levels across developmental stages in the wood white (Leptidea sinapis). We found that although expression of Z-linked genes in general was reduced compared with autosomal genes, dosage compensation was actually complete for some categories of genes, in particular sex-biased genes, but equalization in females was constrained to a narrower gene set. We also observed a noticeable convergence in Z-linked expression between males and females after correcting for sex-biased genes. Sex-biased expression increased successively across developmental stages, and male-biased genes were enriched on the Z-chromosome. Finally, all five core genes associated with the ribonucleoprotein dosage compensation complex male-specific lethal were detected in adult females, in correspondence with a reduction in the expression difference between autosomes and the single Z-chromosome. We show that tuning of gene dosage is multilayered in Lepidoptera and argue that expression balance across chromosomal classes may predominantly be driven by enrichment of male-biased genes on the Z-chromosome and cooption of available dosage regulators.
  •  
2.
  • Knief, Ulrich, et al. (författare)
  • Association mapping of morphological traits in wild and captive zebra finches : reliable within, but not between populations
  • 2017
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 26:5, s. 1285-1305
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying causal genetic variants underlying heritable phenotypic variation is a long-standing goal in evolutionary genetics. We previously identified several quantitative trait loci (QTL) for five morphological traits in a captive population of zebra finches (Taeniopygia guttata) by whole-genome linkage mapping. We here follow up on these studies with the aim to narrow down on the quantitative trait variants (QTN) in one wild and three captive populations. First, we performed an association study using 672 single nucleotide polymorphisms (SNPs) within candidate genes located in the previously identified QTL regions in a sample of 939 wild-caught zebra finches. Then, we validated the most promising SNP-phenotype associations (n=25 SNPs) in 5228 birds from four populations. Genotype-phenotype associations were generally weak in the wild population, where linkage disequilibrium (LD) spans only short genomic distances. In contrast, in captive populations, where LD blocks are large, apparent SNP effects on morphological traits (i.e. associations) were highly repeatable with independent data from the same population. Most of those SNPs also showed significant associations with the same trait in other captive populations, but the direction and magnitude of these effects varied among populations. This suggests that the tested SNPs are not the causal QTN but rather physically linked to them, and that LD between SNPs and causal variants differs between populations due to founder effects. While the identification of QTN remains challenging in nonmodel organisms, we illustrate that it is indeed possible to confirm the location and magnitude of QTL in a population with stable linkage between markers and causal variants.
  •  
3.
  • Leal, Luis, et al. (författare)
  • Gene expression profiling across ontogenetic stages in the wood white (Leptidea sinapis) reveals pathways linked to butterfly diapause regulation
  • 2018
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 27:4, s. 935-948
  • Tidskriftsartikel (refereegranskat)abstract
    • In temperate latitudes, many insects enter diapause (dormancy) during the cold season, a period during which developmental processes come to a standstill. The wood white (Leptidea sinapis) is a butterfly species distributed across western Eurasia that shows photoperiod-induced diapause with variation in critical day-length across populations at different latitudes. We assembled transcriptomes and estimated gene expression levels at different developmental stages in experimentally induced directly developing and diapausing cohorts of a single Swedish population of L. sinapis to investigate the regulatory mechanisms underpinning diapause initiation. Different day lengths resulted in expression changes of developmental genes and affected the rate of accumulation of signal molecules, suggesting that diapause induction might be controlled by increased activity of monoamine neurotransmitters in larvae reared under short-day light conditions. Expression differences between light treatment groups of two monoamine regulator genes (DDC and ST) were observed already in instar III larvae. Once developmental pathways were irreversibly set at instar V, a handful of genes related to dopamine production were differentially expressed leading to a significant decrease in expression of global metabolic genes and increase in expression of genes related to fatty acid synthesis and sequestration. This is in line with a time-dependent (hour-glass) model of diapause regulation where a gradual shift in the concentration of monoamine neurotransmitters and their metabolites during development of larvae under short-day conditions leads to increased storage of fat, decreased energy expenditures, and ultimately developmental stasis at the pupal stage.
  •  
4.
  • Shipilina, Daria, et al. (författare)
  • Patterns of genetic, phenotypic, and acoustic variation across a chiffchaff (Phylloscopus collybita abietinus/tristis) hybrid zone
  • 2017
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 7:7, s. 2169-2180
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterizing patterns of evolution of genetic and phenotypic divergence between incipient species is essential to understand how evolution of reproductive isolation proceeds. Hybrid zones are excellent for studying such processes, as they provide opportunities to assess trait variation in individuals with mixed genetic background and to quantify gene flow across different genomic regions. Here, we combine plumage, song, mtDNA and whole-genome sequence data and analyze variation across a sympatric zone between the European and the Siberian chiffchaff (Phylloscopus collybita abietinus/tristis) to study how gene exchange between the lineages affects trait variation. Our results show that chiffchaff within the sympatric region show more extensive trait variation than allopatric birds, with a large proportion of individuals exhibiting intermediate phenotypic characters. The genomic differentiation between the subspecies is lower in sympatry than in allopatry and sympatric birds have a mix of genetic ancestry indicating extensive ongoing and past gene flow. Patterns of phenotypic and genetic variation also vary between regions within the hybrid zone, potentially reflecting differences in population densities, age of secondary contact, or differences in mate recognition or mate preference. The genomic data support the presence of two distinct genetic clades corresponding to allopatric abietinus and tristis and that genetic admixture is the force underlying trait variation in the sympatric region-the previously described subspecies ("fulvescens") from the region is therefore not likely a distinct taxon. In addition, we conclude that subspecies identification based on appearance is uncertain as an individual with an apparently distinct phenotype can have a considerable proportion of the genome composed of mixed alleles, or even a major part of the genome introgressed from the other subspecies. Our results provide insights into the dynamics of admixture across subspecies boundaries and have implications for understanding speciation processes and for the identification of specific chiffchaff individuals based on phenotypic characters.
  •  
5.
  • Talla, Venkat, et al. (författare)
  • Dissecting the Effects of Selection and Mutation on Genetic Diversity in Three Wood White (Leptidea) Butterfly Species
  • 2019
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 11:10, s. 2875-2886
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative role of natural selection and genetic drift in evolution is a major topic of debate in evolutionary biology. Most knowledge spring from a small group of organisms and originate from before it was possible to generate genome-wide data on genetic variation. Hence, it is necessary to extend to a larger number of taxonomic groups, descriptive and hypothesis-based research aiming at understanding the proximate and ultimate mechanisms underlying both levels of genetic polymorphism and the efficiency of natural selection. In this study, we used data from 60 whole-genome resequenced individuals of three cryptic butterfly species (Leptidea sp.), together with novel gene annotation information and population recombination data. We characterized the overall prevalence of natural selection and investigated the effects of mutation and linked selection on regional variation in nucleotide diversity. Our analyses showed that genome-wide diversity and rate of adaptive substitutions were comparatively low, whereas nonsynonymous to synonymous polymorphism and substitution levels were comparatively high in Leptidea, suggesting small long-term effective population sizes. Still, negative selection on linked sites (background selection) has resulted in reduced nucleotide diversity in regions with relatively high gene density and low recombination rate. We also found a significant effect of mutation rate variation on levels of polymorphism. Finally, there were considerable population differences in levels of genetic diversity and pervasiveness of selection against slightly deleterious alleles, in line with expectations from differences in estimated effective population sizes.
  •  
6.
  • Talla, Venkat, et al. (författare)
  • Heterogeneous Patterns of Genetic Diversity and Differentiation in European and Siberian Chiffchaff (Phylloscopus collybita abietinus/P. tristis)
  • 2017
  • Ingår i: G3. - : Oxford University Press (OUP). - 2160-1836. ; 7:12, s. 3983-3998
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of candidate genes for trait variation in diverging lineages and characterization of mechanistic underpinnings of genome differentiation are key steps toward understanding the processes underlying the formation of new species. Hybrid zones provide a valuable resource for such investigations, since they allow us to study how genomes evolve as species exchange genetic material and to associate particular genetic regions with phenotypic traits of interest. Here, we use whole-genome resequencing of both allopatric and hybridizing populations of the European (Phylloscopus collybita abietinus) and the Siberian chiffchaff (P. tristis)-two recently diverged species which differ in morphology, plumage, song, habitat, and migration-to quantify the regional variation in genome-wide genetic diversity and differentiation, and to identify candidate regions for trait variation. We find that the levels of diversity, differentiation, and divergence are highly heterogeneous, with significantly reduced global differentiation, and more pronounced differentiation peaks in sympatry than in allopatry. This pattern is consistent with regional differences in effective population size and recurrent background selection or selective sweeps reducing the genetic diversity in specific regions prior to lineage divergence, but the data also suggest that post-divergence selection has resulted in increased differentiation and fixed differences in specific regions. We find that hybridization and backcrossing is common in sympatry, and that phenotype is a poor predictor of the genomic composition of sympatric birds. The combination of a differentiation scan approach with identification of fixed differences pinpoint a handful of candidate regions that might be important for trait variation between the two species.
  •  
7.
  • Talla, Venkat, et al. (författare)
  • Lack of gene flow : Narrow and dispersed differentiation islands in a triplet of Leptidea butterfly species
  • 2019
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 28:16, s. 3756-3770
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome scans in recently separated species can inform on molecular mechanisms and evolutionary processes driving divergence. Large-scale polymorphism data from multiple species pairs are also key to investigate the repeatability of divergence-whether radiations tend to show parallel responses to similar selection pressures and/or underlying molecular forces. Here, we used whole-genome resequencing data from six wood white (Leptidea sp.) butterfly populations, representing three closely related species with karyomorph variation, to infer the species' demographic history and characterize patterns of genomic diversity and differentiation. The analyses supported previously established species relationships, and there was no evidence for postdivergence gene flow. We identified significant intraspecific genetic structure, in particular between karyomorph extremes in the wood white (L. sinapis)-a species with a remarkable chromosome number cline across the distribution range. The genomic landscapes of differentiation were erratic, and outlier regions were narrow and dispersed. Highly differentiated (FST ) regions generally had low genetic diversity (θπ ), but increased absolute divergence (DXY ) and excess of rare frequency variants (low Tajima's D). A minority of differentiation peaks were shared across species and population comparisons. However, highly differentiated regions contained genes with overrepresented functions related to metabolism, response to stimulus and cellular processes, indicating recurrent directional selection on a specific set of traits in all comparisons. In contrast to the majority of genome scans in recently diverged lineages, our data suggest that divergence landscapes in Leptidea have been shaped by directional selection and genetic drift rather than stable recombination landscapes and/or introgression.
  •  
8.
  • Talla, Venkat, et al. (författare)
  • Rapid Increase in Genome Size as a Consequence of Transposable Element Hyperactivity in Wood-White (Leptidea) Butterflies
  • 2017
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 9:10, s. 2491-2505
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterizing and quantifying genome size variation among organisms and understanding if genome size evolves as a consequence of adaptive or stochastic processes have been long-standing goals in evolutionary biology. Here, we investigate genome size variation and association with transposable elements (TEs) across lepidopteran lineages using a novel genome assembly of the common wood-white (Leptidea sinapis) and population re-sequencing data from both L. sinapis and the closely related L. reali and L. juvernica together with 12 previously available lepidopteran genome assemblies. A phylogenetic analysis confirms established relationships among species, but identifies previously unknown intraspecific structure within Leptidea lineages. The genome assembly of L. sinapis is one of the largest of any lepidopteran taxon so far (643Mb) and genome size is correlated with abundance of TEs, both in Lepidoptera in general and within Leptidea where L. juvernica from Kazakhstan has considerably larger genome size than any other Leptidea population. Specific TE subclasses have been active in different Lepidoptera lineages with a pronounced expansion of predominantly LINEs, DNA elements, and unclassified TEs in the Leptidea lineage after the split from other Pieridae. The rate of genome expansion in Leptidea in general has been in the range of four Mb/Million year (My), with an increase in a particular L. juvernica population to 72Mb/My. The considerable differences in accumulation rates of specific TE classes in different lineages indicate that TE activity plays a major role in genome size evolution in butterflies and moths.
  •  
9.
  • Talla, Venkat (författare)
  • Speciation genetics of recently diverged species :
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Species differentiation can be a consequence of evolutionary forces including natural selection and random genetic drift. Patterns of genomic differentiation vary across the tree of life. This variation seems to be dependent on, for example, differences in genomic architecture and molecular mechanisms. However, the knowledge we currently possess, both regarding the processes driving speciation and the resulting genomic signatures, is from a very small subset of the overall biodiversity that resides on the planet. Therefore, characterization of the architecture of genomic divergence from more organism groups will be important to understand the effects of molecular mechanisms and evolutionary forces driving divergence between lineages. Hence it has not been possible to come to a consensus on the relative importance of genetic drift and natural selection on divergence processes in general. In this thesis, I use genomic approaches to investigate the forces underlying species and population differentiation in the European cryptic wood white butterflies (Leptidea sinapis, L. reali and L. juvernica) and two closely related bird species, the chiffchaff (Phylloscopus collybita abietinus) and the Siberian chiffchaff (P. tristis). Both these groups contain recently diverged species, a prerequisite for investigating initial differentiation processes. However, the study systems also differ in several respects, allowing for applying distinct approaches to understand the divergence process in each system.In summary, by applying a suite of genomic approaches, my thesis work gives novel insights into the speciation history of wood whites and chiffchaff. I identify candidate genes for local adaptation in both systems and concludes that genome differentiation in wood white butterflies have been driven by a combination of random genetic drift and week directional selection in allopatry. In the chiffchaff, the general differentiation landscape seems to have been shaped by recurrent background selection (and potentially selective sweeps), likely as a consequence of regional variation in the recombination rate which has also been observed in other genome-scans in birds. Potentially, some of the highly differentiated regions contain barriers to gene-flow as these regions are still present in sympatry, where species exchange genetic material at a high rate.
  •  
10.
  • Uebbing, Severin, et al. (författare)
  • Divergence in gene expression within and between two closely related flycatcher species
  • 2016
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 25:9, s. 2015-2028
  • Tidskriftsartikel (refereegranskat)abstract
    • Relatively little is known about the character of gene expression evolution as species diverge. It is for instance unclear if gene expression generally evolves in a clock-like manner (by stabilizing selection or neutral evolution) or if there are frequent episodes of directional selection. To gain insights into the evolutionary divergence of gene expression, we sequenced and compared the transcriptomes of multiple organs from population samples of collared (Ficedula albicollis) and pied flycatchers (F. hypoleuca), two species which diverged less than one million years ago. Ordination analysis separated samples by organ rather than by species. Organs differed in their degrees of expression variance within species and expression divergence between species. Variance was negatively correlated with expression breadth and protein interactivity, suggesting that pleiotropic constraints reduce gene expression variance within species. Variance was correlated with between-species divergence, consistent with a pattern expected from stabilizing selection and neutral evolution. Using an expression PST approach, we identified genes differentially expressed between species and found 16 genes uniquely expressed in one of the species. For one of these, DPP7, uniquely expressed in collared flycatcher, the absence of expression in pied flycatcher could be associated with a ≈ 20 kb deletion including 11 out of 13 exons. This study of a young vertebrate speciation model system expands our knowledge of how gene expression evolves as natural populations become reproductively isolated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy