SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blixt Frank W.) srt2:(2019)"

Sökning: WFRF:(Blixt Frank W.) > (2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blixt, Frank W., et al. (författare)
  • MEK/ERK/1/2 sensitive vascular changes coincide with retinal functional deficit, following transient ophthalmic artery occlusion
  • 2019
  • Ingår i: Experimental Eye Research. - : Elsevier BV. - 0014-4835. ; 179, s. 142-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Retinal ischemia remains a major cause of blindness in the world with few acute treatments available. Recent emphasis on retinal vasculature and the ophthalmic artery's vascular properties after ischemia has shown an increase in vasoconstrictive functionality, as previously observed in cerebral arteries following stroke. Specifically, endothelin-1 (ET-1) receptor-mediated vasoconstriction regulated by the MEK/ERK1/2 pathway. In this study, the ophthalmic artery of rats was occluded for 2 h with the middle cerebral artery occlusion model. MEK/ERK1/2 inhibitor U0126 was administered at 0, 6, and 24 h following reperfusion and the functional properties of the ophthalmic artery were evaluated at 48 h post reperfusion. Additionally, retinal function was evaluated at day 1, 4, and 7 after reperfusion. Occlusion of the ophthalmic artery led to a significant increase of endothelin-1 mediated vasoconstriction which can be attenuated by U0126 treatment, most evident at higher ET-1 concentrations of 10−7 M (Emax151.0 ± 22.0% of 60 mM K+), vs non-treated ischemic arteries Emax 212.1 ± 14.7% of 60 mM K+). Retinal function also deteriorated following ischemia and was improved with treatment with a-wave amplitudes of 725 ± 36 μV in control, 560 ± 21 μV in non-treated, and 668 ± 73 μV in U0126 treated at 2 log cd*s/m2 luminance in the acute stages (1 days post-ischemia). Full spontaneous retinal recovery was observed at day 7 regardless of treatment. In conclusion, this is the first study to show a beneficial in vivo effect of U0126 on vascular contractility following ischemia in the ophthalmic artery. Coupled with the knowledge obtained from cerebral vasculature, these results point towards a novel therapeutic approach following ischemia-related injuries to the eye.
  •  
2.
  • Edvinsson, Jacob C.A., et al. (författare)
  • C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system
  • 2019
  • Ingår i: Journal of Headache and Pain. - : Springer Science and Business Media LLC. - 1129-2369 .- 1129-2377. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Monoclonal antibodies (mAbs) towards CGRP or the CGRP receptor show good prophylactic antimigraine efficacy. However, their site of action is still elusive. Due to lack of passage of mAbs across the blood-brain barrier the trigeminal system has been suggested a possible site of action because it lacks blood-brain barrier and hence is available to circulating molecules. The trigeminal ganglion (TG) harbors two types of neurons; half of which store CGRP and the rest that express CGRP receptor elements (CLR/RAMP1). METHODS: With specific immunohistochemistry methods, we demonstrated the localization of CGRP, CLR, RAMP1, and their locations related to expression of the paranodal marker contactin-associated protein 1 (CASPR). Furthermore, we studied functional CGRP release separately from the neuron soma and the part with only nerve fibers of the trigeminal ganglion, using an enzyme-linked immunosorbent assay. RESULTS: Antibodies towards CGRP and CLR/RAMP1 bind to two different populations of neurons in the TG and are found in the C- and the myelinated Aδ-fibers, respectively, within the dura mater and in trigeminal ganglion (TG). CASPR staining revealed paranodal areas of the different myelinated fibers inhabiting the TG and dura mater. Double immunostaining with CASPR and RAMP1 or the functional CGRP receptor antibody (AA58) revealed co-localization of the two peptides in the paranodal region which suggests the presence of the CGRP-receptor. Double immunostaining with CGRP and CASPR revealed that thin C-fibers have CGRP-positive boutons which often localize in close proximity to the nodal areas of the CGRP-receptor positive Aδ-fibers. These boutons are pearl-like synaptic structures, and we show CGRP release from fibers dissociated from their neuronal bodies. In addition, we found that adjacent to the CGRP receptor localization in the node of Ranvier there was PKA immunoreactivity (kinase stimulated by cAMP), providing structural possibility to modify conduction activity within the Aδ-fibers. CONCLUSION: We observed a close relationship between the CGRP containing C-fibers and the Aδ-fibers containing the CGRP-receptor elements, suggesting a point of axon-axon interaction for the released CGRP and a site of action for gepants and the novel mAbs to alleviate migraine.
  •  
3.
  • Feczkó, Tivadar, et al. (författare)
  • Stimulating brain recovery after stroke using theranostic albumin nanocarriers loaded with nerve growth factor in combination therapy
  • 2019
  • Ingår i: Journal of Controlled Release. - : Elsevier BV. - 0168-3659. ; 293, s. 63-72
  • Tidskriftsartikel (refereegranskat)abstract
    • For many years, delivering drug molecules across the blood brain barrier has been a major challenge. The neuropeptide nerve growth factor is involved in the regulation of growth and differentiation of cholinergic neurons and holds great potential in the treatment of stroke. However, as with many other compounds, the biomolecule is not able to enter the central nervous system. In the present study, nerve growth factor and ultra-small particles of iron oxide were co-encapsulated into a chemically crosslinked albumin nanocarrier matrix which was modified on the surface with apolipoprotein E. These biodegradable nanoparticles with a size of 212 ± 1 nm exhibited monodisperse size distribution and low toxicity. They delivered NGF through an artificial blood brain barrier and were able to induce neurite outgrowth in PC12 cells in vitro. In an animal model of stroke, the infarct size was significantly reduced compared to the vehicle control. The combination therapy of NGF and the small-molecular MEK inhibitor U0126 showed a slight but not significant difference compared to U0126 alone. However, further in vivo evidence suggests that successful delivery of the neuropeptide is possible as well as the synergism between those two treatments.
  •  
4.
  • Haanes, Kristian A., et al. (författare)
  • Exploration of purinergic receptors as potential anti-migraine targets using established pre-clinical migraine models
  • 2019
  • Ingår i: Cephalalgia. - : SAGE Publications. - 0333-1024 .- 1468-2982. ; 39:11, s. 1421-1434
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The current understanding of mechanisms behind migraine pain has been greatly enhanced with the recent therapies targeting calcitonin gene-related peptide and its receptor. The clinical efficacy of calcitonin gene-related peptide-blocking drugs indicates that, at least in a considerable proportion of patients, calcitonin gene-related peptide is a key molecule in migraine pain. There are several receptors and molecular pathways that can affect the release of and response to calcitonin gene-related peptide. One of these could be purinergic receptors that are involved in nociception, but these are greatly understudied with respect to migraine. Objective: We aimed to explore purinergic receptors as potential anti-migraine targets. Methods: We used the human middle meningeal artery as a proxy for the trigeminal system to screen for possible anti-migraine candidates. The human findings were followed by intravital microscopy and calcitonin gene-related peptide release measurements in rodents. Results: We show that the purinergic P2Y13 receptor fulfills all the features of a potential anti-migraine target. The P2Y13 receptor is expressed in both the human trigeminal ganglion and middle meningeal artery and activation of this receptor causes: a) middle meningeal artery contraction in vitro; b) reduced dural artery dilation following periarterial electrical stimulation in vivo and c) a reduction of CGRP release from both the dura and the trigeminal ganglion in situ. Furthermore, we show that P2X3 receptor activation of the trigeminal ganglion causes calcitonin gene-related peptide release and middle meningeal artery dilation. Conclusion: Both an agonist directed at the P2Y13 receptor and an antagonist of the P2X3 receptor seem to be viable potential anti-migraine therapies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy