SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Borg Åke) srt2:(2020)"

Sökning: WFRF:(Borg Åke) > (2020)

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Akdemir, KC, et al. (författare)
  • Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer
  • 2020
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 52:3, s. 294-
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold.
  •  
3.
  • Alexandrov, Ludmil B, et al. (författare)
  • The repertoire of mutational signatures in human cancer
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 578:7793, s. 94-101
  • Tidskriftsartikel (refereegranskat)abstract
    • Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature1. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium2 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures. The substantial size of our dataset, compared with previous analyses3-15, enabled the discovery of new signatures, the separation of overlapping signatures and the decomposition of signatures into components that may represent associated-but distinct-DNA damage, repair and/or replication mechanisms. By estimating the contribution of each signature to the mutational catalogues of individual cancer genomes, we revealed associations of signatures to exogenous or endogenous exposures, as well as to defective DNA-maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes that contribute to the development of human cancer.
  •  
4.
  • Andersson, Alma, et al. (författare)
  • Spatial Deconvolution of HER2-positive Breast Tumors Reveals Novel Intercellular Relationships
  • 2020
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • In the past decades, transcriptomic studies have revolutionized cancer treatment and diagnosis. However, tumor sequencing strategies typically result in loss of spatial information, critical to understand cell interactions and their functional relevance. To address this, we investigate spatial gene expression in HER2-positive breast tumors using Spatial Transcriptomics technology. We show that expression-based clustering enables data-driven tumor annotation and assessment of intra-and interpatient heterogeneity; from which we discover shared gene signatures for immune and tumor processes. We integrate and spatially map tumor-associated types from single cell data to find: segregated epithelial cells, interactions between B and T-cells and myeloid cells, co-localization of macrophage and T-cell subsets. A model is constructed to infer presence of tertiary lymphoid structures, applicable across tissue types and technical platforms. Taken together, we combine different data modalities to define novel interactions between tumor-infiltrating cells in breast cancer and provide tools generalizing across tissues and diseases.
  •  
5.
  •  
6.
  • Bhandari, Vinayak, et al. (författare)
  • Divergent mutational processes distinguish hypoxic and normoxic tumours
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Many primary tumours have low levels of molecular oxygen (hypoxia), and hypoxic tumours respond poorly to therapy. Pan-cancer molecular hallmarks of tumour hypoxia remain poorly understood, with limited comprehension of its associations with specific mutational processes, non-coding driver genes and evolutionary features. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we quantify hypoxia in 1188 tumours spanning 27 cancer types. Elevated hypoxia associates with increased mutational load across cancer types, irrespective of underlying mutational class. The proportion of mutations attributed to several mutational signatures of unknown aetiology directly associates with the level of hypoxia, suggesting underlying mutational processes for these signatures. At the gene level, driver mutations in TP53, MYC and PTEN are enriched in hypoxic tumours, and mutations in PTEN interact with hypoxia to direct tumour evolutionary trajectories. Overall, hypoxia plays a critical role in shaping the genomic and evolutionary landscapes of cancer.
  •  
7.
  • Bogdanska, Jasna, et al. (författare)
  • Tissue distribution of C-14-labelled perfluorooctanoic acid in adult mice after 1-5 days of dietary exposure to an experimental dose or a lower dose that resulted in blood levels similar to those detected in exposed humans
  • 2020
  • Ingår i: Chemosphere. - : Elsevier. - 0045-6535 .- 1879-1298. ; 239
  • Tidskriftsartikel (refereegranskat)abstract
    • Perfluorooctanoic acid (PFOA), a global environmental pollutant detected in both wildlife and human populations, has several pathophysiological effects in experimental animals, including hepatotoxicity, immunotoxicity, and developmental toxicity. However, details concerning the tissue distribution of PFOA, in particular at levels relevant to humans, are lacking, which limits our understanding of how humans, and other mammals, may be affected by this compound. Therefore, we characterized the tissue distribution of C-14-PFOA in mice in the same manner as we earlier examined its analogues perfluorooctanesulfonate (PFOS) and perfluorobutanesulfonate (PFBS) in order to allow direct comparisons. Following dietary exposure of adult male C57/BL6 mice for 1, 3 or 5 days to a low dose (0.06 mg/kg/day) or a higher experimental dose (22 mg/kg/day) of C-14-PFOA, both scintillation counting and whole-body autoradiography revealed the presence of PFOA in most of the 19 different tissues examined, demonstrating its ability to leave the bloodstream and enter tissues. There were no differences in the pattern of tissue distribution with the low and high dose and the tissue-to-blood ratios were similar. At both doses, PFOA levels were highest in the liver, followed by blood, lungs and kidneys. The body compartments estimated to contain the largest amounts of PFOA were the liver, blood, skin and muscle. In comparison with our identical studies on PFOS and PFBS, PFOA reached considerably higher tissue levels than PFBS, but lower than PFOS. Furthermore, the distribution of PFOA differed notably from that of PFOS, with lower tissue-to-blood ratios in the liver, lungs, kidneys and skin.
  •  
8.
  •  
9.
  • Brueffer, Christian, et al. (författare)
  • The Mutational Landscape of the SCAN-B Real-World Primary Breast Cancer Transcriptome
  • 2020
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Breast cancer is a disease of genomic alterations, of which the complete panorama of somatic mutations and how these relate to molecular subtypes and therapy response is incompletely understood. Within the Sweden Cancerome Analysis Network–Breast project (SCAN-B; ClinicalTrials.govNCT02306096), an ongoing study elucidating the tumor transcriptomic profiles for thousands of breast cancers prospectively, we developed an optimized pipeline for detection of single nucleotide variants and small insertions and deletions from RNA sequencing (RNA-seq) data, and profiled a large real-world population-based cohort of 3,217 breast tumors. We use it to describe the mutational landscape of primary breast cancer viewed through the transcriptome of a large population-based cohort of patients, and relate it to patient overall survival. We demonstrate that RNA-seq can be used to call mutations in important breast cancer genes such asPIK3CA,TP53, andERBB2, as well as the status of key molecular pathways and tumor mutational burden, and identify potentially druggable genes in 86.8% percent of tumors. To make this rich and growing mutational portraiture of breast cancer available for the wider research community, we developed an open source web-based application, the SCAN-B MutationExplorer, accessible athttp://oncogenomics.bmc.lu.se/MutationExplorer. These results add another dimension to the use of RNA-seq as a potential clinical tool, where both gene expression-based and gene mutation-based biomarkers can be interrogated simultaneously and in real-time within one week of tumor sampling.
  •  
10.
  • Brueffer, Christian, et al. (författare)
  • The mutational landscape of the SCAN‐B real‐world primary breast cancer transcriptome
  • 2020
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4684 .- 1757-4676. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer is a disease of genomic alterations, of which the panorama of somatic mutations and how these relate to subtypes and therapy response is incompletely understood. Within SCAN‐B (ClinicalTrials.gov: NCT02306096), a prospective study elucidating the transcriptomic profiles for thousands of breast cancers, we developed a RNA‐seq pipeline for detection of SNVs/indels and profiled a real‐world cohort of 3,217 breast tumors. We describe the mutational landscape of primary breast cancer viewed through the transcriptome of a large population‐based cohort and relate it to patient survival. We demonstrate that RNA‐seq can be used to call mutations in genes such as PIK3CA, TP53, and ERBB2, as well as the status of molecular pathways and mutational burden, and identify potentially druggable mutations in 86.8% of tumors. To make this rich dataset available for the research community, we developed an open source web application, the SCAN‐B MutationExplorer (http://oncogenomics.bmc.lu.se/MutationExplorer). These results add another dimension to the use of RNA‐seq as a clinical tool, where both gene expression‐ and mutation‐based biomarkers can be interrogated in real‐time within 1 week of tumor sampling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy